Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ralbida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2ralbida.2 | ⊢ Ⅎ 𝑦 𝜑 | ||
| 2ralbida.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | 2ralbida | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2ralbida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | 2ralbida.2 | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | 2ralbida.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 5 | 2 4 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) | 
| 6 | 3 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) | 
| 7 | 5 6 | ralbida | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐵 𝜒 ) ) | 
| 8 | 1 7 | ralbida | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜒 ) ) |