Metamath Proof Explorer


Theorem 2ralbidva

Description: Formula-building rule for restricted universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 9-Dec-2019)

Ref Expression
Hypothesis 2ralbidva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion 2ralbidva ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2ralbidva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
2 1 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
3 2 ralbidva ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑦𝐵 𝜓 ↔ ∀ 𝑦𝐵 𝜒 ) )
4 3 ralbidva ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )