Metamath Proof Explorer


Theorem 2ralbii

Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis ralbii.1 ( 𝜑𝜓 )
Assertion 2ralbii ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralbii.1 ( 𝜑𝜓 )
2 1 ralbii ( ∀ 𝑦𝐵 𝜑 ↔ ∀ 𝑦𝐵 𝜓 )
3 2 ralbii ( ∀ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜓 )