Metamath Proof Explorer


Theorem 2ralbiim

Description: Split a biconditional and distribute two restricted universal quantifiers, analogous to 2albiim and ralbiim . (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion 2ralbiim ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 ralbiim ( ∀ 𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∀ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝐵 ( 𝜓𝜑 ) ) )
2 1 ralbii ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ∀ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝐵 ( 𝜓𝜑 ) ) )
3 r19.26 ( ∀ 𝑥𝐴 ( ∀ 𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑦𝐵 ( 𝜓𝜑 ) ) ↔ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( 𝜓𝜑 ) ) )
4 2 3 bitri ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝐴𝑦𝐵 ( 𝜓𝜑 ) ) )