Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2ralsng.1 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | 2ralsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsng.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | 2ralsng.1 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 1 | ralbidv | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝜓 ) ) |
4 | 3 | ralsng | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝜓 ) ) |
5 | 2 | ralsng | ⊢ ( 𝐵 ∈ 𝑊 → ( ∀ 𝑦 ∈ { 𝐵 } 𝜓 ↔ 𝜒 ) ) |
6 | 4 5 | sylan9bb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ 𝜒 ) ) |