Metamath Proof Explorer


Theorem 2ralsng

Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2ralsng.1 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion 2ralsng ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 2ralsng.1 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 1 ralbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝜓 ) )
4 3 ralsng ( 𝐴𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑 ↔ ∀ 𝑦 ∈ { 𝐵 } 𝜓 ) )
5 2 ralsng ( 𝐵𝑊 → ( ∀ 𝑦 ∈ { 𝐵 } 𝜓𝜒 ) )
6 4 5 sylan9bb ( ( 𝐴𝑉𝐵𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 } ∀ 𝑦 ∈ { 𝐵 } 𝜑𝜒 ) )