| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2ralunsn.1 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
| 2 |
|
2ralunsn.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
2ralunsn.3 |
⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜃 ) ) |
| 4 |
2
|
ralunsn |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| 5 |
4
|
ralbidv |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ) ) |
| 6 |
1
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 𝜒 ) ) |
| 7 |
6 3
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) |
| 8 |
7
|
ralunsn |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |
| 9 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 10 |
9
|
anbi1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) |
| 11 |
8 10
|
bitrdi |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ( ∀ 𝑦 ∈ 𝐴 𝜑 ∧ 𝜓 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |
| 12 |
5 11
|
bitrd |
⊢ ( 𝐵 ∈ 𝐶 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ { 𝐵 } ) ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝜑 ↔ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ( ∀ 𝑦 ∈ 𝐴 𝜒 ∧ 𝜃 ) ) ) ) |