Step |
Hyp |
Ref |
Expression |
1 |
|
2rbropap.1 |
⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) } ) |
2 |
|
2rbropap.2 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
2rbropap.3 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( 𝜏 ↔ 𝜃 ) ) |
4 |
|
3anass |
⊢ ( ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) ↔ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) ) |
5 |
4
|
opabbii |
⊢ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ 𝜓 ∧ 𝜏 ) } = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) } |
6 |
1 5
|
eqtrdi |
⊢ ( 𝜑 → 𝑀 = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓 ∧ 𝜏 ) ) } ) |
7 |
2 3
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑝 = 𝑃 ) → ( ( 𝜓 ∧ 𝜏 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
8 |
6 7
|
rbropap |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒 ∧ 𝜃 ) ) ) ) |
9 |
|
3anass |
⊢ ( ( 𝐹 𝑊 𝑃 ∧ 𝜒 ∧ 𝜃 ) ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒 ∧ 𝜃 ) ) ) |
10 |
8 9
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ 𝜒 ∧ 𝜃 ) ) ) |