Metamath Proof Explorer


Theorem 2rbropap

Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the conditions ps and ta . (Contributed by AV, 31-Jan-2021)

Ref Expression
Hypotheses 2rbropap.1 ( 𝜑𝑀 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 𝑊 𝑝𝜓𝜏 ) } )
2rbropap.2 ( ( 𝑓 = 𝐹𝑝 = 𝑃 ) → ( 𝜓𝜒 ) )
2rbropap.3 ( ( 𝑓 = 𝐹𝑝 = 𝑃 ) → ( 𝜏𝜃 ) )
Assertion 2rbropap ( ( 𝜑𝐹𝑋𝑃𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 2rbropap.1 ( 𝜑𝑀 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 𝑊 𝑝𝜓𝜏 ) } )
2 2rbropap.2 ( ( 𝑓 = 𝐹𝑝 = 𝑃 ) → ( 𝜓𝜒 ) )
3 2rbropap.3 ( ( 𝑓 = 𝐹𝑝 = 𝑃 ) → ( 𝜏𝜃 ) )
4 3anass ( ( 𝑓 𝑊 𝑝𝜓𝜏 ) ↔ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓𝜏 ) ) )
5 4 opabbii { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 𝑊 𝑝𝜓𝜏 ) } = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓𝜏 ) ) }
6 1 5 eqtrdi ( 𝜑𝑀 = { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 𝑊 𝑝 ∧ ( 𝜓𝜏 ) ) } )
7 2 3 anbi12d ( ( 𝑓 = 𝐹𝑝 = 𝑃 ) → ( ( 𝜓𝜏 ) ↔ ( 𝜒𝜃 ) ) )
8 6 7 rbropap ( ( 𝜑𝐹𝑋𝑃𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒𝜃 ) ) ) )
9 3anass ( ( 𝐹 𝑊 𝑃𝜒𝜃 ) ↔ ( 𝐹 𝑊 𝑃 ∧ ( 𝜒𝜃 ) ) )
10 8 9 bitr4di ( ( 𝜑𝐹𝑋𝑃𝑌 ) → ( 𝐹 𝑀 𝑃 ↔ ( 𝐹 𝑊 𝑃𝜒𝜃 ) ) )