Metamath Proof Explorer


Theorem 2reu2

Description: Double restricted existential uniqueness, analogous to 2eu2 . (Contributed by Alexander van der Vekens, 29-Jun-2017)

Ref Expression
Assertion 2reu2 ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 reurmo ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ∃* 𝑦𝐵𝑥𝐴 𝜑 )
2 2rmorex ( ∃* 𝑦𝐵𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 )
3 2reu1 ( ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 → ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ) )
4 simpl ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ∃! 𝑥𝐴𝑦𝐵 𝜑 )
5 3 4 syl6bi ( ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 → ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 → ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
6 1 2 5 3syl ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 → ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )
7 2rexreu ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )
8 7 expcom ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ( ∃! 𝑥𝐴𝑦𝐵 𝜑 → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) )
9 6 8 impbid ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃! 𝑥𝐴𝑦𝐵 𝜑 ) )