Metamath Proof Explorer


Theorem 2reu4

Description: Definition of double restricted existential uniqueness ("exactly one x and exactly one y "), analogous to 2eu4 . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion 2reu4 ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) )

Proof

Step Hyp Ref Expression
1 reurex ( ∃! 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜑 )
2 rexn0 ( ∃ 𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅ )
3 1 2 syl ( ∃! 𝑥𝐴𝑦𝐵 𝜑𝐴 ≠ ∅ )
4 reurex ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ∃ 𝑦𝐵𝑥𝐴 𝜑 )
5 rexn0 ( ∃ 𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅ )
6 4 5 syl ( ∃! 𝑦𝐵𝑥𝐴 𝜑𝐵 ≠ ∅ )
7 3 6 anim12i ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) )
8 ne0i ( 𝑥𝐴𝐴 ≠ ∅ )
9 ne0i ( 𝑦𝐵𝐵 ≠ ∅ )
10 8 9 anim12i ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) )
11 10 a1d ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑 → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ) )
12 11 rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) )
13 12 adantr ( ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) → ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) )
14 2reu4lem ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) ) )
15 7 13 14 pm5.21nii ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃ 𝑧𝐴𝑤𝐵𝑥𝐴𝑦𝐵 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ) )