| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reu3 | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 2 |  | reu3 | ⊢ ( ∃! 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ↔  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 3 | 1 2 | anbi12i | ⊢ ( ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃! 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) )  ∧  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃! 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) )  ∧  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 5 |  | an4 | ⊢ ( ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) )  ∧  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) )  ↔  ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ∧  ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) )  ∧  ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) )  ↔  ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ∧  ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 7 |  | rexcom | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 8 | 7 | anbi2i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 9 |  | anidm | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 12 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 13 |  | nfra1 | ⊢ Ⅎ 𝑥 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) | 
						
							| 14 | 13 | r19.3rz | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 15 | 14 | bicomd | ⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 19 |  | jcab | ⊢ ( ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 20 | 19 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑦  ∈  𝐵 ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 21 |  | r19.26 | ⊢ ( ∀ 𝑦  ∈  𝐵 ( ( 𝜑  →  𝑥  =  𝑧 )  ∧  ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 22 | 20 21 | bitri | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 23 | 22 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 24 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 25 | 23 24 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 27 | 18 26 | bitr4d | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 28 | 12 27 | bitr2id | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 29 |  | r19.26 | ⊢ ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 30 |  | nfra1 | ⊢ Ⅎ 𝑦 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 ) | 
						
							| 31 | 30 | r19.3rz | ⊢ ( 𝐵  ≠  ∅  →  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∀ 𝑦  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 33 | 32 | bicomd | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 34 |  | ralcom | ⊢ ( ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) | 
						
							| 35 | 34 | a1i | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 36 | 33 35 | anbi12d | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ( ∀ 𝑦  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 37 | 29 36 | bitrid | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 38 | 37 | ralbidv | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 39 | 28 38 | bitr4d | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 40 |  | r19.23v | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) ) | 
						
							| 41 |  | r19.23v | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 )  ↔  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) | 
						
							| 42 | 40 41 | anbi12i | ⊢ ( ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 43 | 42 | 2ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 44 | 43 | a1i | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ∀ 𝑦  ∈  𝐵 ( 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝜑  →  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 45 |  | neneq | ⊢ ( 𝐴  ≠  ∅  →  ¬  𝐴  =  ∅ ) | 
						
							| 46 |  | neneq | ⊢ ( 𝐵  ≠  ∅  →  ¬  𝐵  =  ∅ ) | 
						
							| 47 | 45 46 | anim12i | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) | 
						
							| 48 | 47 | olcd | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) ) | 
						
							| 49 |  | dfbi3 | ⊢ ( ( 𝐴  =  ∅  ↔  𝐵  =  ∅ )  ↔  ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  ∨  ( ¬  𝐴  =  ∅  ∧  ¬  𝐵  =  ∅ ) ) ) | 
						
							| 50 | 48 49 | sylibr | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( 𝐴  =  ∅  ↔  𝐵  =  ∅ ) ) | 
						
							| 51 |  | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  𝐵 𝜑 | 
						
							| 52 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  =  𝑧 | 
						
							| 53 | 51 52 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 ) | 
						
							| 54 |  | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  𝐴 𝜑 | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑥 𝑦  =  𝑤 | 
						
							| 56 | 54 55 | nfim | ⊢ Ⅎ 𝑥 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) | 
						
							| 57 | 53 56 | raaan2 | ⊢ ( ( 𝐴  =  ∅  ↔  𝐵  =  ∅ )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 58 | 50 57 | syl | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 60 | 39 44 59 | 3bitrd | ⊢ ( ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  ∧  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 61 | 60 | 2rexbidva | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) ) | 
						
							| 62 |  | reeanv | ⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ( ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) )  ↔  ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) ) | 
						
							| 63 | 61 62 | bitr2di | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 64 | 11 63 | anbi12d | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ∧  ( ∃ 𝑧  ∈  𝐴 ∀ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  →  𝑥  =  𝑧 )  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝑦  =  𝑤 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 65 | 4 6 64 | 3bitrd | ⊢ ( ( 𝐴  ≠  ∅  ∧  𝐵  ≠  ∅ )  →  ( ( ∃! 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃! 𝑦  ∈  𝐵 ∃ 𝑥  ∈  𝐴 𝜑 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) |