| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.29r | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 2 |  | r19.29r | ⊢ ( ( ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝜑  ∧  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 3 | 2 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐴 ( ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝜑  ∧  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 4 |  | pm3.35 | ⊢ ( ( 𝜑  ∧  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 5 | 4 | reximi | ⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝜑  ∧  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 6 | 5 | reximi | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝜑  ∧  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) | 
						
							| 7 |  | eleq1w | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 8 |  | eleq1w | ⊢ ( 𝑦  =  𝑤  →  ( 𝑦  ∈  𝐵  ↔  𝑤  ∈  𝐵 ) ) | 
						
							| 9 | 7 8 | bi2anan9 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) ) ) | 
						
							| 10 | 9 | biimpac | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐵 ) ) | 
						
							| 11 | 10 | ancomd | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 13 | 12 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 14 | 1 3 6 13 | 4syl | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  →  ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  →  ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 16 | 15 | pm4.71rd | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 17 |  | anass | ⊢ ( ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 18 | 16 17 | bitrdi | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) ) | 
						
							| 19 | 18 | 2exbidv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  →  ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) ) | 
						
							| 20 | 19 | pm5.32i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) ) | 
						
							| 21 |  | 2reu5lem3 | ⊢ ( ( ∃! 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 22 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 23 |  | r19.42v | ⊢ ( ∃ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 24 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  𝐵 ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 25 | 23 24 | bitr3i | ⊢ ( ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 26 | 25 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧  ∈  𝐴  ∧  ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 27 | 22 26 | bitri | ⊢ ( ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 28 | 27 | anbi2i | ⊢ ( ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ( 𝑤  ∈  𝐵  ∧  ( 𝑧  ∈  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) ) | 
						
							| 29 | 20 21 28 | 3bitr4i | ⊢ ( ( ∃! 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) |