Metamath Proof Explorer


Theorem 2reu5a

Description: Double restricted existential uniqueness in terms of restricted existence and restricted "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion 2reu5a ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ∧ ∃* 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 reu5 ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ( ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ∧ ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) )
2 reu5 ( ∃! 𝑦𝐵 𝜑 ↔ ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) )
3 2 rexbii ( ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) )
4 2 rmobii ( ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ∃* 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) )
5 3 4 anbi12i ( ( ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ∧ ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) ↔ ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ∧ ∃* 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ) )
6 1 5 bitri ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ∧ ∃* 𝑥𝐴 ( ∃ 𝑦𝐵 𝜑 ∧ ∃* 𝑦𝐵 𝜑 ) ) )