Step |
Hyp |
Ref |
Expression |
1 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
2 |
1
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
3 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
4 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
5 |
4
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
6 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
7 |
6
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
8 |
7
|
mobii |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
9 |
5 8
|
bitri |
⊢ ( ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
11 |
3 10
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
12 |
2 11
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |