| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rmo | ⊢ ( ∃* 𝑦  ∈  𝐵 𝜑  ↔  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 2 | 1 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑥  ∈  𝐴 ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 3 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 4 |  | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  →  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 5 | 4 | bicomi | ⊢ ( ( 𝑥  ∈  𝐴  →  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 7 | 6 | bicomi | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 8 | 7 | mobii | ⊢ ( ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 9 | 5 8 | bitri | ⊢ ( ( 𝑥  ∈  𝐴  →  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 11 | 3 10 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 12 | 2 11 | bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) |