Metamath Proof Explorer


Theorem 2reu5lem2

Description: Lemma for 2reu5 . (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion 2reu5lem2 ( ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-rmo ( ∃* 𝑦𝐵 𝜑 ↔ ∃* 𝑦 ( 𝑦𝐵𝜑 ) )
2 1 ralbii ( ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 ↔ ∀ 𝑥𝐴 ∃* 𝑦 ( 𝑦𝐵𝜑 ) )
3 df-ral ( ∀ 𝑥𝐴 ∃* 𝑦 ( 𝑦𝐵𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ∃* 𝑦 ( 𝑦𝐵𝜑 ) ) )
4 moanimv ( ∃* 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴 → ∃* 𝑦 ( 𝑦𝐵𝜑 ) ) )
5 4 bicomi ( ( 𝑥𝐴 → ∃* 𝑦 ( 𝑦𝐵𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) )
6 3anass ( ( 𝑥𝐴𝑦𝐵𝜑 ) ↔ ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) )
7 6 bicomi ( ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ( 𝑥𝐴𝑦𝐵𝜑 ) )
8 7 mobii ( ∃* 𝑦 ( 𝑥𝐴 ∧ ( 𝑦𝐵𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )
9 5 8 bitri ( ( 𝑥𝐴 → ∃* 𝑦 ( 𝑦𝐵𝜑 ) ) ↔ ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )
10 9 albii ( ∀ 𝑥 ( 𝑥𝐴 → ∃* 𝑦 ( 𝑦𝐵𝜑 ) ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )
11 3 10 bitri ( ∀ 𝑥𝐴 ∃* 𝑦 ( 𝑦𝐵𝜑 ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )
12 2 11 bitri ( ∀ 𝑥𝐴 ∃* 𝑦𝐵 𝜑 ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥𝐴𝑦𝐵𝜑 ) )