| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2reu5lem1 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 2 |
|
2reu5lem2 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 3 |
1 2
|
anbi12i |
⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 4 |
|
2eu5 |
⊢ ( ( ∃! 𝑥 ∃! 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 5 |
|
3anass |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 8 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 9 |
8
|
bicomi |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 10 |
9
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 11 |
6 7 10
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 13 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 14 |
12 13
|
bitr4i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) |
| 15 |
|
3anan12 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 16 |
15
|
imbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 17 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 18 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 19 |
18
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 20 |
16 17 19
|
3bitri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 21 |
20
|
albii |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 22 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) ) |
| 23 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 24 |
21 22 23
|
3bitr2i |
⊢ ( ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 25 |
24
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 26 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 27 |
25 26
|
bitr4i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 28 |
27
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 29 |
28
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 30 |
14 29
|
anbi12i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 31 |
3 4 30
|
3bitri |
⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |