| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2reu5lem1 | ⊢ ( ∃! 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝜑  ↔  ∃! 𝑥 ∃! 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 2 |  | 2reu5lem2 | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑  ↔  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 3 | 1 2 | anbi12i | ⊢ ( ( ∃! 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑 )  ↔  ( ∃! 𝑥 ∃! 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ∧  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 4 |  | 2eu5 | ⊢ ( ( ∃! 𝑥 ∃! 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ∧  ∀ 𝑥 ∃* 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 5 |  | 3anass | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 7 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) ) | 
						
							| 8 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) ) | 
						
							| 9 | 8 | bicomi | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∃ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦 ( 𝑦  ∈  𝐵  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 11 | 6 7 10 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 13 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ∃ 𝑦  ∈  𝐵 𝜑 ) ) | 
						
							| 14 | 12 13 | bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑 ) | 
						
							| 15 |  | 3anan12 | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 16 | 15 | imbi1i | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( ( 𝑦  ∈  𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 17 |  | impexp | ⊢ ( ( ( 𝑦  ∈  𝐵  ∧  ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( 𝑦  ∈  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 18 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 19 | 18 | imbi2i | ⊢ ( ( 𝑦  ∈  𝐵  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 20 | 16 17 19 | 3bitri | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 21 | 20 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 22 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  →  ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) ) | 
						
							| 23 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝐵 ( 𝑥  ∈  𝐴  →  ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 24 | 21 22 23 | 3bitr2i | ⊢ ( ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 25 | 24 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 26 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 27 | 25 26 | bitr4i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 28 | 27 | exbii | ⊢ ( ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 29 | 28 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) )  ↔  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) | 
						
							| 30 | 14 29 | anbi12i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵  ∧  𝜑 )  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) | 
						
							| 31 | 3 4 30 | 3bitri | ⊢ ( ( ∃! 𝑥  ∈  𝐴 ∃! 𝑦  ∈  𝐵 𝜑  ∧  ∀ 𝑥  ∈  𝐴 ∃* 𝑦  ∈  𝐵 𝜑 )  ↔  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐵 𝜑  ∧  ∃ 𝑧 ∃ 𝑤 ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝜑  →  ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 ) ) ) ) |