Metamath Proof Explorer


Theorem 2reurmo

Description: Double restricted quantification with restricted existential uniqueness and restricted "at most one", analogous to 2eumo . (Contributed by Alexander van der Vekens, 24-Jun-2017)

Ref Expression
Assertion 2reurmo ( ∃! 𝑥𝐴 ∃* 𝑦𝐵 𝜑 → ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 reuimrmo ( ∀ 𝑥𝐴 ( ∃! 𝑦𝐵 𝜑 → ∃* 𝑦𝐵 𝜑 ) → ( ∃! 𝑥𝐴 ∃* 𝑦𝐵 𝜑 → ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) )
2 reurmo ( ∃! 𝑦𝐵 𝜑 → ∃* 𝑦𝐵 𝜑 )
3 2 a1i ( 𝑥𝐴 → ( ∃! 𝑦𝐵 𝜑 → ∃* 𝑦𝐵 𝜑 ) )
4 1 3 mprg ( ∃! 𝑥𝐴 ∃* 𝑦𝐵 𝜑 → ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )