Metamath Proof Explorer
Description: Formula-building rule for restricted existential quantifiers (deduction
form). (Contributed by NM, 28-Jan-2006)
|
|
Ref |
Expression |
|
Hypothesis |
2rexbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
2rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2rexbidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
3 |
2
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |