Metamath Proof Explorer


Theorem 2rexbidva

Description: Formula-building rule for restricted existential quantifiers (deduction form). (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypothesis 2rexbidva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion 2rexbidva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2rexbidva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
2 1 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
3 2 rexbidva ( ( 𝜑𝑥𝐴 ) → ( ∃ 𝑦𝐵 𝜓 ↔ ∃ 𝑦𝐵 𝜒 ) )
4 3 rexbidva ( 𝜑 → ( ∃ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜒 ) )