Metamath Proof Explorer


Theorem 2rexbii

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995)

Ref Expression
Hypothesis rexbii.1 ( 𝜑𝜓 )
Assertion 2rexbii ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rexbii.1 ( 𝜑𝜓 )
2 1 rexbii ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 𝜓 )
3 2 rexbii ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 )