Metamath Proof Explorer


Theorem 2rexbiia

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis 2rexbiia.1 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) )
Assertion 2rexbiia ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 2rexbiia.1 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) )
2 1 rexbidva ( 𝑥𝐴 → ( ∃ 𝑦𝐵 𝜑 ↔ ∃ 𝑦𝐵 𝜓 ) )
3 2 rexbiia ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥𝐴𝑦𝐵 𝜓 )