Metamath Proof Explorer


Theorem 2rexreu

Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu . (Contributed by Alexander van der Vekens, 25-Jun-2017)

Ref Expression
Assertion 2rexreu ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 reurmo ( ∃! 𝑥𝐴𝑦𝐵 𝜑 → ∃* 𝑥𝐴𝑦𝐵 𝜑 )
2 reurex ( ∃! 𝑦𝐵 𝜑 → ∃ 𝑦𝐵 𝜑 )
3 2 rmoimi ( ∃* 𝑥𝐴𝑦𝐵 𝜑 → ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )
4 1 3 syl ( ∃! 𝑥𝐴𝑦𝐵 𝜑 → ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )
5 2reurex ( ∃! 𝑦𝐵𝑥𝐴 𝜑 → ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )
6 4 5 anim12ci ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ( ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ∧ ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) )
7 reu5 ( ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ↔ ( ∃ 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ∧ ∃* 𝑥𝐴 ∃! 𝑦𝐵 𝜑 ) )
8 6 7 sylibr ( ( ∃! 𝑥𝐴𝑦𝐵 𝜑 ∧ ∃! 𝑦𝐵𝑥𝐴 𝜑 ) → ∃! 𝑥𝐴 ∃! 𝑦𝐵 𝜑 )