Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | 2rexuz | ⊢ ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexuz2 | ⊢ ( ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ) ) | |
2 | 1 | exbii | ⊢ ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∃ 𝑚 ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ) ) |
3 | df-rex | ⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ↔ ∃ 𝑚 ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ) ) | |
4 | 2 3 | bitr4i | ⊢ ( ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) 𝜑 ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚 ≤ 𝑛 ∧ 𝜑 ) ) |