Metamath Proof Explorer


Theorem 2rexuz

Description: Double existential quantification in an upper set of integers. (Contributed by NM, 3-Nov-2005)

Ref Expression
Assertion 2rexuz ( ∃ 𝑚𝑛 ∈ ( ℤ𝑚 ) 𝜑 ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) )

Proof

Step Hyp Ref Expression
1 rexuz2 ( ∃ 𝑛 ∈ ( ℤ𝑚 ) 𝜑 ↔ ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) ) )
2 1 exbii ( ∃ 𝑚𝑛 ∈ ( ℤ𝑚 ) 𝜑 ↔ ∃ 𝑚 ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) ) )
3 df-rex ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) ↔ ∃ 𝑚 ( 𝑚 ∈ ℤ ∧ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) ) )
4 2 3 bitr4i ( ∃ 𝑚𝑛 ∈ ( ℤ𝑚 ) 𝜑 ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( 𝑚𝑛𝜑 ) )