Description: Double restricted quantification with "at most one", analogous to 2moex . (Contributed by Alexander van der Vekens, 17-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | 2rmorex | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃* 𝑥 ∈ 𝐴 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
2 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐵 𝜑 | |
3 | 1 2 | nfrmow | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 |
4 | rmoim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) | |
5 | rspe | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
6 | 5 | ex | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
7 | 6 | ralrimivw | ⊢ ( 𝑦 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
8 | 4 7 | syl11 | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
9 | 3 8 | ralrimi | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃* 𝑥 ∈ 𝐴 𝜑 ) |