Metamath Proof Explorer


Theorem 2rmorex

Description: Double restricted quantification with "at most one", analogous to 2moex . (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion 2rmorex ( ∃* 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵 ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 nfcv 𝑦 𝐴
2 nfre1 𝑦𝑦𝐵 𝜑
3 1 2 nfrmow 𝑦 ∃* 𝑥𝐴𝑦𝐵 𝜑
4 rmoim ( ∀ 𝑥𝐴 ( 𝜑 → ∃ 𝑦𝐵 𝜑 ) → ( ∃* 𝑥𝐴𝑦𝐵 𝜑 → ∃* 𝑥𝐴 𝜑 ) )
5 rspe ( ( 𝑦𝐵𝜑 ) → ∃ 𝑦𝐵 𝜑 )
6 5 ex ( 𝑦𝐵 → ( 𝜑 → ∃ 𝑦𝐵 𝜑 ) )
7 6 ralrimivw ( 𝑦𝐵 → ∀ 𝑥𝐴 ( 𝜑 → ∃ 𝑦𝐵 𝜑 ) )
8 4 7 syl11 ( ∃* 𝑥𝐴𝑦𝐵 𝜑 → ( 𝑦𝐵 → ∃* 𝑥𝐴 𝜑 ) )
9 3 8 ralrimi ( ∃* 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵 ∃* 𝑥𝐴 𝜑 )