Step |
Hyp |
Ref |
Expression |
1 |
|
sb5 |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ) |
2 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
3 |
|
anass |
⊢ ( ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝑧 ∧ ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
5 |
|
sb5 |
⊢ ( [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( 𝑥 = 𝑧 ∧ ∃ 𝑦 ( 𝑦 = 𝑤 ∧ 𝜑 ) ) ) |
7 |
2 4 6
|
3bitr4ri |
⊢ ( ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |
9 |
1 8
|
bitri |
⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ∧ 𝜑 ) ) |