Step |
Hyp |
Ref |
Expression |
1 |
|
ax6e2ndeq |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
2 |
|
anabs5 |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
3 |
|
2pm13.193 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
5 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 |
6 |
5
|
nfsb |
⊢ Ⅎ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 |
7 |
6
|
19.41 |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
8 |
4 7
|
bitr3i |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
10 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 |
11 |
10
|
19.41 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
12 |
9 11
|
bitr2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
13 |
12
|
anbi2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
14 |
2 13
|
bitr3i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
15 |
|
pm5.32 |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) ) |
16 |
14 15
|
mpbir |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
17 |
1 16
|
sylbi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |