| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sb5rf.1 |
⊢ Ⅎ 𝑧 𝜑 |
| 2 |
|
2sb5rf.2 |
⊢ Ⅎ 𝑤 𝜑 |
| 3 |
1
|
19.41 |
⊢ ( ∃ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 4 |
2
|
19.41 |
⊢ ( ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 6 |
|
2ax6e |
⊢ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) |
| 7 |
6
|
biantrur |
⊢ ( 𝜑 ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 8 |
3 5 7
|
3bitr4ri |
⊢ ( 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 9 |
|
sbequ12r |
⊢ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 10 |
|
sbequ12r |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 11 |
9 10
|
sylan9bb |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 12 |
11
|
pm5.32i |
⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 13 |
12
|
2exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 14 |
8 13
|
bitr4i |
⊢ ( 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |