Step |
Hyp |
Ref |
Expression |
1 |
|
2sb5rf.1 |
⊢ Ⅎ 𝑧 𝜑 |
2 |
|
2sb5rf.2 |
⊢ Ⅎ 𝑤 𝜑 |
3 |
1
|
19.41 |
⊢ ( ∃ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
4 |
2
|
19.41 |
⊢ ( ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
5 |
4
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
6 |
|
2ax6e |
⊢ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) |
7 |
6
|
biantrur |
⊢ ( 𝜑 ↔ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
8 |
3 5 7
|
3bitr4ri |
⊢ ( 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
9 |
|
sbequ12r |
⊢ ( 𝑧 = 𝑥 → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ [ 𝑤 / 𝑦 ] 𝜑 ) ) |
10 |
|
sbequ12r |
⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
11 |
9 10
|
sylan9bb |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
12 |
11
|
pm5.32i |
⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
13 |
12
|
2exbii |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
14 |
8 13
|
bitr4i |
⊢ ( 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) ) |