| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 2 | 1 | sb8e | ⊢ ( ∃ 𝑦 𝜑  ↔  ∃ 𝑤 [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 3 | 2 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑥 ∃ 𝑤 [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 4 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑤 [ 𝑤  /  𝑦 ] 𝜑  ↔  ∃ 𝑤 ∃ 𝑥 [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑤 ∃ 𝑥 [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 7 | 6 | nfsb | ⊢ Ⅎ 𝑧 [ 𝑤  /  𝑦 ] 𝜑 | 
						
							| 8 | 7 | sb8e | ⊢ ( ∃ 𝑥 [ 𝑤  /  𝑦 ] 𝜑  ↔  ∃ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 9 | 8 | exbii | ⊢ ( ∃ 𝑤 ∃ 𝑥 [ 𝑤  /  𝑦 ] 𝜑  ↔  ∃ 𝑤 ∃ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 10 |  | excom | ⊢ ( ∃ 𝑤 ∃ 𝑧 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) | 
						
							| 11 | 5 9 10 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑧 ∃ 𝑤 [ 𝑧  /  𝑥 ] [ 𝑤  /  𝑦 ] 𝜑 ) |