Metamath Proof Explorer


Theorem 2sb8e

Description: An equivalent expression for double existence. Usage of this theorem is discouraged because it depends on ax-13 . For a version requiring more disjoint variables, but fewer axioms, see 2sb8ev . (Contributed by Wolf Lammen, 2-Nov-2019) (New usage is discouraged.)

Ref Expression
Assertion 2sb8e ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 nfv 𝑤 𝜑
2 1 sb8e ( ∃ 𝑦 𝜑 ↔ ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 )
3 2 exbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑤 [ 𝑤 / 𝑦 ] 𝜑 )
4 excom ( ∃ 𝑥𝑤 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 )
5 3 4 bitri ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 )
6 nfv 𝑧 𝜑
7 6 nfsb 𝑧 [ 𝑤 / 𝑦 ] 𝜑
8 7 sb8e ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
9 8 exbii ( ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
10 excom ( ∃ 𝑤𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
11 5 9 10 3bitri ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )