Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
2 |
1
|
sb8e |
⊢ ( ∃ 𝑦 𝜑 ↔ ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ) |
3 |
2
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑥 ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ) |
4 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) |
5 |
3 4
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ) |
6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
7 |
6
|
nfsb |
⊢ Ⅎ 𝑧 [ 𝑤 / 𝑦 ] 𝜑 |
8 |
7
|
sb8e |
⊢ ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
9 |
8
|
exbii |
⊢ ( ∃ 𝑤 ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤 ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
10 |
|
excom |
⊢ ( ∃ 𝑤 ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |
11 |
5 9 10
|
3bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ) |