Metamath Proof Explorer


Theorem 2sb8ev

Description: An equivalent expression for double existence. Version of 2sb8e with more disjoint variable conditions, not requiring ax-13 . (Contributed by Wolf Lammen, 28-Jan-2023)

Ref Expression
Hypotheses 2sb8ev.1 𝑤 𝜑
2sb8ev.2 𝑧 𝜑
Assertion 2sb8ev ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 2sb8ev.1 𝑤 𝜑
2 2sb8ev.2 𝑧 𝜑
3 1 sb8ev ( ∃ 𝑦 𝜑 ↔ ∃ 𝑤 [ 𝑤 / 𝑦 ] 𝜑 )
4 3 exbii ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑥𝑤 [ 𝑤 / 𝑦 ] 𝜑 )
5 excom ( ∃ 𝑥𝑤 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 )
6 4 5 bitri ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 )
7 2 nfsbv 𝑧 [ 𝑤 / 𝑦 ] 𝜑
8 7 sb8ev ( ∃ 𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
9 8 exbii ( ∃ 𝑤𝑥 [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑤𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
10 excom ( ∃ 𝑤𝑧 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )
11 6 9 10 3bitri ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑤 [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 )