Metamath Proof Explorer
Description: Deduction doubly substituting both sides of a biconditional.
(Contributed by AV, 30-Jul-2023)
|
|
Ref |
Expression |
|
Hypotheses |
sbbid.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
sbbid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
2sbbid.1 |
⊢ Ⅎ 𝑦 𝜑 |
|
Assertion |
2sbbid |
⊢ ( 𝜑 → ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sbbid.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
sbbid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
2sbbid.1 |
⊢ Ⅎ 𝑦 𝜑 |
4 |
3 2
|
sbbid |
⊢ ( 𝜑 → ( [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑢 / 𝑦 ] 𝜒 ) ) |
5 |
1 4
|
sbbid |
⊢ ( 𝜑 → ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜒 ) ) |