Metamath Proof Explorer


Theorem 2sbbii

Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)

Ref Expression
Hypothesis sbbii.1 ( 𝜑𝜓 )
Assertion 2sbbii ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 sbbii.1 ( 𝜑𝜓 )
2 1 sbbii ( [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑢 / 𝑦 ] 𝜓 )
3 2 sbbii ( [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜑 ↔ [ 𝑡 / 𝑥 ] [ 𝑢 / 𝑦 ] 𝜓 )