Metamath Proof Explorer
		
		
		
		Description:  Infer double substitution into both sides of a logical equivalence.
       (Contributed by AV, 30-Jul-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | sbbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
				
					|  | Assertion | 2sbbii | ⊢  ( [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜑  ↔  [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbbii.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 2 | 1 | sbbii | ⊢ ( [ 𝑢  /  𝑦 ] 𝜑  ↔  [ 𝑢  /  𝑦 ] 𝜓 ) | 
						
							| 3 | 2 | sbbii | ⊢ ( [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜑  ↔  [ 𝑡  /  𝑥 ] [ 𝑢  /  𝑦 ] 𝜓 ) |