| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑤 = 𝑦 ↔ 𝑤 = 𝐵 ) ) |
| 2 |
1
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 4 |
3
|
2exbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 5 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 6 |
5
|
sbcbidv |
⊢ ( 𝑦 = 𝐵 → ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 7 |
4 6
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| 8 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝐴 ) ) |
| 9 |
8
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) |
| 10 |
9
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 11 |
10
|
2exbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ) ) |
| 12 |
|
dfsbcq |
⊢ ( 𝑥 = 𝐴 → ( [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 13 |
11 12
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
| 14 |
|
sbc5 |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ) |
| 15 |
|
19.42v |
⊢ ( ∃ 𝑤 ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ↔ ( 𝑧 = 𝑥 ∧ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 16 |
|
anass |
⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 17 |
16
|
exbii |
⊢ ( ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ( 𝑧 = 𝑥 ∧ ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 18 |
|
sbc5 |
⊢ ( [ 𝑦 / 𝑤 ] 𝜑 ↔ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) |
| 19 |
18
|
anbi2i |
⊢ ( ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( 𝑧 = 𝑥 ∧ ∃ 𝑤 ( 𝑤 = 𝑦 ∧ 𝜑 ) ) ) |
| 20 |
15 17 19
|
3bitr4ri |
⊢ ( ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 21 |
20
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 = 𝑥 ∧ [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ) |
| 22 |
14 21
|
bitr2i |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ∧ 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) |
| 23 |
7 13 22
|
vtocl2g |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
| 24 |
23
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ∧ 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |