Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑤 = 𝑦 ↔ 𝑤 = 𝐵 ) ) |
2 |
1
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) ↔ ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ) ) |
3 |
2
|
imbi1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) |
4 |
3
|
2albidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) |
5 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐵 → ( [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝐵 / 𝑤 ] 𝜑 ) ) |
6 |
5
|
sbcbidv |
⊢ ( 𝑦 = 𝐵 → ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
7 |
4 6
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
8 |
|
eqeq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝐴 ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ) |
10 |
9
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) |
11 |
10
|
2albidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) |
12 |
|
dfsbcq |
⊢ ( 𝑥 = 𝐴 → ( [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
13 |
11 12
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
14
|
sbc6 |
⊢ ( [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ↔ ∀ 𝑧 ( 𝑧 = 𝑥 → [ 𝑦 / 𝑤 ] 𝜑 ) ) |
16 |
|
19.21v |
⊢ ( ∀ 𝑤 ( 𝑧 = 𝑥 → ( 𝑤 = 𝑦 → 𝜑 ) ) ↔ ( 𝑧 = 𝑥 → ∀ 𝑤 ( 𝑤 = 𝑦 → 𝜑 ) ) ) |
17 |
|
impexp |
⊢ ( ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ( 𝑧 = 𝑥 → ( 𝑤 = 𝑦 → 𝜑 ) ) ) |
18 |
17
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ ∀ 𝑤 ( 𝑧 = 𝑥 → ( 𝑤 = 𝑦 → 𝜑 ) ) ) |
19 |
|
vex |
⊢ 𝑦 ∈ V |
20 |
19
|
sbc6 |
⊢ ( [ 𝑦 / 𝑤 ] 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑦 → 𝜑 ) ) |
21 |
20
|
imbi2i |
⊢ ( ( 𝑧 = 𝑥 → [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ( 𝑧 = 𝑥 → ∀ 𝑤 ( 𝑤 = 𝑦 → 𝜑 ) ) ) |
22 |
16 18 21
|
3bitr4ri |
⊢ ( ( 𝑧 = 𝑥 → [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
23 |
22
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑥 → [ 𝑦 / 𝑤 ] 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ) |
24 |
15 23
|
bitr2i |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → 𝜑 ) ↔ [ 𝑥 / 𝑧 ] [ 𝑦 / 𝑤 ] 𝜑 ) |
25 |
7 13 24
|
vtocl2g |
⊢ ( ( 𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
26 |
25
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |