| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sphere.i |
⊢ 𝐼 = { 1 , 2 } |
| 2 |
|
2sphere.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
| 3 |
|
2sphere.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 4 |
|
2sphere.s |
⊢ 𝑆 = ( Sphere ‘ 𝐸 ) |
| 5 |
|
2sphere0.0 |
⊢ 0 = ( 𝐼 × { 0 } ) |
| 6 |
|
2sphere0.c |
⊢ 𝐶 = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } |
| 7 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 8 |
1 7
|
eqeltri |
⊢ 𝐼 ∈ V |
| 9 |
5 3
|
rrx0el |
⊢ ( 𝐼 ∈ V → 0 ∈ 𝑃 ) |
| 10 |
8 9
|
ax-mp |
⊢ 0 ∈ 𝑃 |
| 11 |
|
eqid |
⊢ { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } |
| 12 |
1 2 3 4 11
|
2sphere |
⊢ ( ( 0 ∈ 𝑃 ∧ 𝑅 ∈ ( 0 [,) +∞ ) ) → ( 0 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } ) |
| 13 |
10 12
|
mpan |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) → ( 0 𝑆 𝑅 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } ) |
| 14 |
5
|
fveq1i |
⊢ ( 0 ‘ 1 ) = ( ( 𝐼 × { 0 } ) ‘ 1 ) |
| 15 |
|
c0ex |
⊢ 0 ∈ V |
| 16 |
|
1ex |
⊢ 1 ∈ V |
| 17 |
16
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
| 18 |
17 1
|
eleqtrri |
⊢ 1 ∈ 𝐼 |
| 19 |
|
fvconst2g |
⊢ ( ( 0 ∈ V ∧ 1 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 1 ) = 0 ) |
| 20 |
15 18 19
|
mp2an |
⊢ ( ( 𝐼 × { 0 } ) ‘ 1 ) = 0 |
| 21 |
14 20
|
eqtri |
⊢ ( 0 ‘ 1 ) = 0 |
| 22 |
21
|
a1i |
⊢ ( 𝑝 ∈ 𝑃 → ( 0 ‘ 1 ) = 0 ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( ( 𝑝 ‘ 1 ) − 0 ) ) |
| 24 |
1 3
|
rrx2pxel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℂ ) |
| 26 |
25
|
subid1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 1 ) − 0 ) = ( 𝑝 ‘ 1 ) ) |
| 27 |
23 26
|
eqtrd |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( 𝑝 ‘ 1 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) = ( ( 𝑝 ‘ 1 ) ↑ 2 ) ) |
| 29 |
5
|
fveq1i |
⊢ ( 0 ‘ 2 ) = ( ( 𝐼 × { 0 } ) ‘ 2 ) |
| 30 |
|
2ex |
⊢ 2 ∈ V |
| 31 |
30
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
| 32 |
31 1
|
eleqtrri |
⊢ 2 ∈ 𝐼 |
| 33 |
|
fvconst2g |
⊢ ( ( 0 ∈ V ∧ 2 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 2 ) = 0 ) |
| 34 |
15 32 33
|
mp2an |
⊢ ( ( 𝐼 × { 0 } ) ‘ 2 ) = 0 |
| 35 |
29 34
|
eqtri |
⊢ ( 0 ‘ 2 ) = 0 |
| 36 |
35
|
a1i |
⊢ ( 𝑝 ∈ 𝑃 → ( 0 ‘ 2 ) = 0 ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( ( 𝑝 ‘ 2 ) − 0 ) ) |
| 38 |
1 3
|
rrx2pyel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
| 40 |
39
|
subid1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 2 ) − 0 ) = ( 𝑝 ‘ 2 ) ) |
| 41 |
37 40
|
eqtrd |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( 𝑝 ‘ 2 ) ) |
| 42 |
41
|
oveq1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) = ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) |
| 43 |
28 42
|
oveq12d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) ) |
| 44 |
43
|
eqeq1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝑅 ∈ ( 0 [,) +∞ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) ) |
| 46 |
45
|
rabbidva |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) → { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } ) |
| 47 |
46 6
|
eqtr4di |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) → { 𝑝 ∈ 𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = 𝐶 ) |
| 48 |
13 47
|
eqtrd |
⊢ ( 𝑅 ∈ ( 0 [,) +∞ ) → ( 0 𝑆 𝑅 ) = 𝐶 ) |