Step |
Hyp |
Ref |
Expression |
1 |
|
2wlkd.p |
⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 |
2 |
|
2wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 |
3 |
|
2wlkd.s |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) |
4 |
|
2wlkd.n |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) |
5 |
|
2wlkd.e |
⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
6 |
|
2wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
7 |
|
2wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
8 |
|
2trld.n |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
9 |
|
2spthd.n |
⊢ ( 𝜑 → 𝐴 ≠ 𝐶 ) |
10 |
1 2 3 4 5 6 7 8
|
2trld |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
11 |
|
3anan32 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝐴 ≠ 𝐶 ) ) |
12 |
4 9 11
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
13 |
|
funcnvs3 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → Fun ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
14 |
3 12 13
|
syl2anc |
⊢ ( 𝜑 → Fun ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
15 |
1
|
a1i |
⊢ ( 𝜑 → 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
16 |
15
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝑃 = ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) |
17 |
16
|
funeqd |
⊢ ( 𝜑 → ( Fun ◡ 𝑃 ↔ Fun ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) |
18 |
14 17
|
mpbird |
⊢ ( 𝜑 → Fun ◡ 𝑃 ) |
19 |
|
isspth |
⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝑃 ) ) |
20 |
10 18 19
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |