| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2wlkd.p | ⊢ 𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 | 
						
							| 2 |  | 2wlkd.f | ⊢ 𝐹  =  〈“ 𝐽 𝐾 ”〉 | 
						
							| 3 |  | 2wlkd.s | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 ) ) | 
						
							| 4 |  | 2wlkd.n | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 5 |  | 2wlkd.e | ⊢ ( 𝜑  →  ( { 𝐴 ,  𝐵 }  ⊆  ( 𝐼 ‘ 𝐽 )  ∧  { 𝐵 ,  𝐶 }  ⊆  ( 𝐼 ‘ 𝐾 ) ) ) | 
						
							| 6 |  | 2wlkd.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 7 |  | 2wlkd.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 8 |  | 2trld.n | ⊢ ( 𝜑  →  𝐽  ≠  𝐾 ) | 
						
							| 9 |  | 2spthd.n | ⊢ ( 𝜑  →  𝐴  ≠  𝐶 ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | 2trld | ⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | 
						
							| 11 |  | 3anan32 | ⊢ ( ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 )  ↔  ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  𝐴  ≠  𝐶 ) ) | 
						
							| 12 | 4 9 11 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) ) | 
						
							| 13 |  | funcnvs3 | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑉 )  ∧  ( 𝐴  ≠  𝐵  ∧  𝐴  ≠  𝐶  ∧  𝐵  ≠  𝐶 ) )  →  Fun  ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 14 | 3 12 13 | syl2anc | ⊢ ( 𝜑  →  Fun  ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 15 | 1 | a1i | ⊢ ( 𝜑  →  𝑃  =  〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 16 | 15 | cnveqd | ⊢ ( 𝜑  →  ◡ 𝑃  =  ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) | 
						
							| 17 | 16 | funeqd | ⊢ ( 𝜑  →  ( Fun  ◡ 𝑃  ↔  Fun  ◡ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( 𝜑  →  Fun  ◡ 𝑃 ) | 
						
							| 19 |  | isspth | ⊢ ( 𝐹 ( SPaths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ 𝑃 ) ) | 
						
							| 20 | 10 18 19 | sylanbrc | ⊢ ( 𝜑  →  𝐹 ( SPaths ‘ 𝐺 ) 𝑃 ) |