Step |
Hyp |
Ref |
Expression |
1 |
|
nn0sqcl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
2 |
|
nn0sqcl |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ↑ 2 ) ∈ ℕ0 ) |
3 |
2
|
nn0red |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
4 |
1 3
|
anim12ci |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) ) |
6 |
|
nn0addge2 |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 2 ) ∈ ℕ0 ) → ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
8 |
|
breq2 |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ 2 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ↔ ( 𝐵 ↑ 2 ) ≤ 2 ) ) |
10 |
2
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐵 ↑ 2 ) ∈ ℕ0 ) |
11 |
|
nn0le2is012 |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℕ0 ∧ ( 𝐵 ↑ 2 ) ≤ 2 ) → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) |
12 |
11
|
ex |
⊢ ( ( 𝐵 ↑ 2 ) ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) ) |
13 |
10 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) ) ) |
14 |
|
oveq2 |
⊢ ( ( 𝐵 ↑ 2 ) = 0 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + 0 ) ) |
15 |
14
|
eqeq1d |
⊢ ( ( 𝐵 ↑ 2 ) = 0 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ) ) |
17 |
1
|
nn0cnd |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
18 |
17
|
addid1d |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) + 0 ) = ( 𝐴 ↑ 2 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) + 0 ) = ( 𝐴 ↑ 2 ) ) |
20 |
19
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
21 |
1
|
nn0red |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
22 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
23 |
22
|
sqge0d |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
24 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
25 |
24
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℕ0 ) |
26 |
25
|
nn0red |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℝ ) |
27 |
|
0le2 |
⊢ 0 ≤ 2 |
28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 2 ) |
29 |
|
sqrt11 |
⊢ ( ( ( ( 𝐴 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ↑ 2 ) ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
30 |
21 23 26 28 29
|
syl22anc |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐴 ↑ 2 ) = 2 ) ) |
31 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
32 |
22 31
|
sqrtsqd |
⊢ ( 𝐴 ∈ ℕ0 → ( √ ‘ ( 𝐴 ↑ 2 ) ) = 𝐴 ) |
33 |
32
|
eqeq1d |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ 𝐴 = ( √ ‘ 2 ) ) ) |
34 |
|
sqrt2irr |
⊢ ( √ ‘ 2 ) ∉ ℚ |
35 |
|
df-nel |
⊢ ( ( √ ‘ 2 ) ∉ ℚ ↔ ¬ ( √ ‘ 2 ) ∈ ℚ ) |
36 |
|
id |
⊢ ( ( √ ‘ 2 ) = 𝐴 → ( √ ‘ 2 ) = 𝐴 ) |
37 |
36
|
eqcoms |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( √ ‘ 2 ) = 𝐴 ) |
38 |
37
|
eleq1d |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
39 |
38
|
notbid |
⊢ ( 𝐴 = ( √ ‘ 2 ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐴 ∈ ℚ ) ) |
41 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
42 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
43 |
41 42
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℚ ) |
44 |
43
|
pm2.24d |
⊢ ( 𝐴 ∈ ℕ0 → ( ¬ 𝐴 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ 𝐴 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
46 |
40 45
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
47 |
46
|
com12 |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( ( 𝐴 ∈ ℕ0 ∧ 𝐴 = ( √ ‘ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
48 |
47
|
expd |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
49 |
35 48
|
sylbi |
⊢ ( ( √ ‘ 2 ) ∉ ℚ → ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
50 |
34 49
|
ax-mp |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
51 |
33 50
|
sylbid |
⊢ ( 𝐴 ∈ ℕ0 → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
52 |
30 51
|
sylbird |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
54 |
20 53
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + 0 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
56 |
16 55
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
57 |
56
|
impancom |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 0 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
58 |
|
oveq2 |
⊢ ( ( 𝐵 ↑ 2 ) = 1 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) |
59 |
58
|
eqeq1d |
⊢ ( ( 𝐵 ↑ 2 ) = 1 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
60 |
|
2cnd |
⊢ ( 𝐴 ∈ ℕ0 → 2 ∈ ℂ ) |
61 |
|
1cnd |
⊢ ( 𝐴 ∈ ℕ0 → 1 ∈ ℂ ) |
62 |
60 61 17
|
3jca |
⊢ ( 𝐴 ∈ ℕ0 → ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) ) |
64 |
|
subadd2 |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
65 |
63 64
|
syl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ) ) |
66 |
65
|
bicomd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + 1 ) = 2 ↔ ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ) ) |
67 |
59 66
|
sylan9bbr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ) ) |
68 |
|
nn0sqeq1 |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ ( 𝐵 ↑ 2 ) = 1 ) → 𝐵 = 1 ) |
69 |
68
|
ex |
⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) = 1 → 𝐵 = 1 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) = 1 → 𝐵 = 1 ) ) |
71 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
72 |
71
|
a1i |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 2 − 1 ) = 1 ) |
73 |
72
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ 1 = ( 𝐴 ↑ 2 ) ) ) |
74 |
|
eqcom |
⊢ ( 1 = ( 𝐴 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) |
75 |
73 74
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
76 |
|
nn0sqeq1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐴 ↑ 2 ) = 1 ) → 𝐴 = 1 ) |
77 |
76
|
ex |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝐴 ↑ 2 ) = 1 → 𝐴 = 1 ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 1 → 𝐴 = 1 ) ) |
79 |
|
id |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) |
80 |
79
|
ex |
⊢ ( 𝐴 = 1 → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
81 |
78 80
|
syl6 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ↑ 2 ) = 1 → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
82 |
75 81
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐵 = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
83 |
82
|
com23 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐵 = 1 → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
84 |
70 83
|
syld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐵 ↑ 2 ) = 1 → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
85 |
84
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( 2 − 1 ) = ( 𝐴 ↑ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
86 |
67 85
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐵 ↑ 2 ) = 1 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
87 |
86
|
impancom |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 1 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
88 |
|
nn0re |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) |
89 |
|
nn0ge0 |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 𝐵 ) |
90 |
88 89
|
sqrtsqd |
⊢ ( 𝐵 ∈ ℕ0 → ( √ ‘ ( 𝐵 ↑ 2 ) ) = 𝐵 ) |
91 |
90
|
eqcomd |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 = ( √ ‘ ( 𝐵 ↑ 2 ) ) ) |
92 |
91
|
eqeq1d |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) ↔ ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ) ) |
93 |
88
|
sqge0d |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ ( 𝐵 ↑ 2 ) ) |
94 |
|
2re |
⊢ 2 ∈ ℝ |
95 |
94
|
a1i |
⊢ ( 𝐵 ∈ ℕ0 → 2 ∈ ℝ ) |
96 |
27
|
a1i |
⊢ ( 𝐵 ∈ ℕ0 → 0 ≤ 2 ) |
97 |
|
sqrt11 |
⊢ ( ( ( ( 𝐵 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 ↑ 2 ) ) ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ) → ( ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
98 |
3 93 95 96 97
|
syl22anc |
⊢ ( 𝐵 ∈ ℕ0 → ( ( √ ‘ ( 𝐵 ↑ 2 ) ) = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
99 |
92 98
|
bitrd |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) ↔ ( 𝐵 ↑ 2 ) = 2 ) ) |
100 |
|
id |
⊢ ( ( √ ‘ 2 ) = 𝐵 → ( √ ‘ 2 ) = 𝐵 ) |
101 |
100
|
eqcoms |
⊢ ( 𝐵 = ( √ ‘ 2 ) → ( √ ‘ 2 ) = 𝐵 ) |
102 |
101
|
eleq1d |
⊢ ( 𝐵 = ( √ ‘ 2 ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐵 ∈ ℚ ) ) |
103 |
102
|
adantl |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ( √ ‘ 2 ) ∈ ℚ ↔ 𝐵 ∈ ℚ ) ) |
104 |
103
|
notbid |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ ↔ ¬ 𝐵 ∈ ℚ ) ) |
105 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
106 |
|
zq |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) |
107 |
105 106
|
syl |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℚ ) |
108 |
107
|
pm2.24d |
⊢ ( 𝐵 ∈ ℕ0 → ( ¬ 𝐵 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ 𝐵 ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
110 |
104 109
|
sylbid |
⊢ ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
111 |
110
|
com12 |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( ( 𝐵 ∈ ℕ0 ∧ 𝐵 = ( √ ‘ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
112 |
111
|
expd |
⊢ ( ¬ ( √ ‘ 2 ) ∈ ℚ → ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
113 |
35 112
|
sylbi |
⊢ ( ( √ ‘ 2 ) ∉ ℚ → ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) ) |
114 |
34 113
|
ax-mp |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐵 = ( √ ‘ 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
115 |
99 114
|
sylbird |
⊢ ( 𝐵 ∈ ℕ0 → ( ( 𝐵 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
116 |
115
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
117 |
57 87 116
|
3jaod |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( ( 𝐵 ↑ 2 ) = 0 ∨ ( 𝐵 ↑ 2 ) = 1 ∨ ( 𝐵 ↑ 2 ) = 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
118 |
13 117
|
syld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
119 |
9 118
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( ( 𝐵 ↑ 2 ) ≤ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
120 |
7 119
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) |
121 |
120
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 → ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |
122 |
|
oveq1 |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = ( 1 ↑ 2 ) ) |
123 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
124 |
122 123
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( 𝐴 ↑ 2 ) = 1 ) |
125 |
|
oveq1 |
⊢ ( 𝐵 = 1 → ( 𝐵 ↑ 2 ) = ( 1 ↑ 2 ) ) |
126 |
125 123
|
eqtrdi |
⊢ ( 𝐵 = 1 → ( 𝐵 ↑ 2 ) = 1 ) |
127 |
124 126
|
oveqan12d |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 1 + 1 ) ) |
128 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
129 |
127 128
|
eqtrdi |
⊢ ( ( 𝐴 = 1 ∧ 𝐵 = 1 ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ) |
130 |
121 129
|
impbid1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 2 ↔ ( 𝐴 = 1 ∧ 𝐵 = 1 ) ) ) |