| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0sqcl | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 2 |  | nn0sqcl | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 3 | 2 | nn0red | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 4 | 1 3 | anim12ci | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐵 ↑ 2 )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℕ0 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℕ0 ) ) | 
						
							| 6 |  | nn0addge2 | ⊢ ( ( ( 𝐵 ↑ 2 )  ∈  ℝ  ∧  ( 𝐴 ↑ 2 )  ∈  ℕ0 )  →  ( 𝐵 ↑ 2 )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( 𝐵 ↑ 2 )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 8 |  | breq2 | ⊢ ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  →  ( ( 𝐵 ↑ 2 )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ↔  ( 𝐵 ↑ 2 )  ≤  2 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ↔  ( 𝐵 ↑ 2 )  ≤  2 ) ) | 
						
							| 10 | 2 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( 𝐵 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 11 |  | nn0le2is012 | ⊢ ( ( ( 𝐵 ↑ 2 )  ∈  ℕ0  ∧  ( 𝐵 ↑ 2 )  ≤  2 )  →  ( ( 𝐵 ↑ 2 )  =  0  ∨  ( 𝐵 ↑ 2 )  =  1  ∨  ( 𝐵 ↑ 2 )  =  2 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝐵 ↑ 2 )  ∈  ℕ0  →  ( ( 𝐵 ↑ 2 )  ≤  2  →  ( ( 𝐵 ↑ 2 )  =  0  ∨  ( 𝐵 ↑ 2 )  =  1  ∨  ( 𝐵 ↑ 2 )  =  2 ) ) ) | 
						
							| 13 | 10 12 | syl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  ≤  2  →  ( ( 𝐵 ↑ 2 )  =  0  ∨  ( 𝐵 ↑ 2 )  =  1  ∨  ( 𝐵 ↑ 2 )  =  2 ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( ( 𝐵 ↑ 2 )  =  0  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  +  0 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( ( 𝐵 ↑ 2 )  =  0  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  ↔  ( ( 𝐴 ↑ 2 )  +  0 )  =  2 ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  ↔  ( ( 𝐴 ↑ 2 )  +  0 )  =  2 ) ) | 
						
							| 17 | 1 | nn0cnd | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 18 | 17 | addridd | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐴 ↑ 2 )  +  0 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 2 )  +  0 )  =  ( 𝐴 ↑ 2 ) ) | 
						
							| 20 | 19 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 2 )  +  0 )  =  2  ↔  ( 𝐴 ↑ 2 )  =  2 ) ) | 
						
							| 21 | 1 | nn0red | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 22 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 22 | sqge0d | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  ( 𝐴 ↑ 2 ) ) | 
						
							| 24 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐴  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0red | ⊢ ( 𝐴  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 27 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  2 ) | 
						
							| 29 |  | sqrt11 | ⊢ ( ( ( ( 𝐴 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐴 ↑ 2 ) )  ∧  ( 2  ∈  ℝ  ∧  0  ≤  2 ) )  →  ( ( √ ‘ ( 𝐴 ↑ 2 ) )  =  ( √ ‘ 2 )  ↔  ( 𝐴 ↑ 2 )  =  2 ) ) | 
						
							| 30 | 21 23 26 28 29 | syl22anc | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( √ ‘ ( 𝐴 ↑ 2 ) )  =  ( √ ‘ 2 )  ↔  ( 𝐴 ↑ 2 )  =  2 ) ) | 
						
							| 31 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 32 | 22 31 | sqrtsqd | ⊢ ( 𝐴  ∈  ℕ0  →  ( √ ‘ ( 𝐴 ↑ 2 ) )  =  𝐴 ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( √ ‘ ( 𝐴 ↑ 2 ) )  =  ( √ ‘ 2 )  ↔  𝐴  =  ( √ ‘ 2 ) ) ) | 
						
							| 34 |  | sqrt2irr | ⊢ ( √ ‘ 2 )  ∉  ℚ | 
						
							| 35 |  | df-nel | ⊢ ( ( √ ‘ 2 )  ∉  ℚ  ↔  ¬  ( √ ‘ 2 )  ∈  ℚ ) | 
						
							| 36 |  | id | ⊢ ( ( √ ‘ 2 )  =  𝐴  →  ( √ ‘ 2 )  =  𝐴 ) | 
						
							| 37 | 36 | eqcoms | ⊢ ( 𝐴  =  ( √ ‘ 2 )  →  ( √ ‘ 2 )  =  𝐴 ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝐴  =  ( √ ‘ 2 )  →  ( ( √ ‘ 2 )  ∈  ℚ  ↔  𝐴  ∈  ℚ ) ) | 
						
							| 39 | 38 | notbid | ⊢ ( 𝐴  =  ( √ ‘ 2 )  →  ( ¬  ( √ ‘ 2 )  ∈  ℚ  ↔  ¬  𝐴  ∈  ℚ ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐴  =  ( √ ‘ 2 ) )  →  ( ¬  ( √ ‘ 2 )  ∈  ℚ  ↔  ¬  𝐴  ∈  ℚ ) ) | 
						
							| 41 |  | nn0z | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℤ ) | 
						
							| 42 |  | zq | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℚ ) | 
						
							| 43 | 41 42 | syl | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℚ ) | 
						
							| 44 | 43 | pm2.24d | ⊢ ( 𝐴  ∈  ℕ0  →  ( ¬  𝐴  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐴  =  ( √ ‘ 2 ) )  →  ( ¬  𝐴  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 46 | 40 45 | sylbid | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐴  =  ( √ ‘ 2 ) )  →  ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 47 | 46 | com12 | ⊢ ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( ( 𝐴  ∈  ℕ0  ∧  𝐴  =  ( √ ‘ 2 ) )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 48 | 47 | expd | ⊢ ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( 𝐴  ∈  ℕ0  →  ( 𝐴  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 49 | 35 48 | sylbi | ⊢ ( ( √ ‘ 2 )  ∉  ℚ  →  ( 𝐴  ∈  ℕ0  →  ( 𝐴  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 50 | 34 49 | ax-mp | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 51 | 33 50 | sylbid | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( √ ‘ ( 𝐴 ↑ 2 ) )  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 52 | 30 51 | sylbird | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐴 ↑ 2 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 2 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 54 | 20 53 | sylbid | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 2 )  +  0 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  0 )  →  ( ( ( 𝐴 ↑ 2 )  +  0 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 56 | 16 55 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 57 | 56 | impancom | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  =  0  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( ( 𝐵 ↑ 2 )  =  1  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( ( 𝐴 ↑ 2 )  +  1 ) ) | 
						
							| 59 | 58 | eqeq1d | ⊢ ( ( 𝐵 ↑ 2 )  =  1  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  ↔  ( ( 𝐴 ↑ 2 )  +  1 )  =  2 ) ) | 
						
							| 60 |  | 2cnd | ⊢ ( 𝐴  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 61 |  | 1cnd | ⊢ ( 𝐴  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 62 | 60 61 17 | 3jca | ⊢ ( 𝐴  ∈  ℕ0  →  ( 2  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 2  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ ) ) | 
						
							| 64 |  | subadd2 | ⊢ ( ( 2  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴 ↑ 2 )  ∈  ℂ )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  ↔  ( ( 𝐴 ↑ 2 )  +  1 )  =  2 ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  ↔  ( ( 𝐴 ↑ 2 )  +  1 )  =  2 ) ) | 
						
							| 66 | 65 | bicomd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 2 )  +  1 )  =  2  ↔  ( 2  −  1 )  =  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 67 | 59 66 | sylan9bbr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  1 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  ↔  ( 2  −  1 )  =  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 68 |  | nn0sqeq1 | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  ( 𝐵 ↑ 2 )  =  1 )  →  𝐵  =  1 ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝐵  ∈  ℕ0  →  ( ( 𝐵 ↑ 2 )  =  1  →  𝐵  =  1 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐵 ↑ 2 )  =  1  →  𝐵  =  1 ) ) | 
						
							| 71 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 72 | 71 | a1i | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 2  −  1 )  =  1 ) | 
						
							| 73 | 72 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  ↔  1  =  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 74 |  | eqcom | ⊢ ( 1  =  ( 𝐴 ↑ 2 )  ↔  ( 𝐴 ↑ 2 )  =  1 ) | 
						
							| 75 | 73 74 | bitrdi | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  ↔  ( 𝐴 ↑ 2 )  =  1 ) ) | 
						
							| 76 |  | nn0sqeq1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  ( 𝐴 ↑ 2 )  =  1 )  →  𝐴  =  1 ) | 
						
							| 77 | 76 | ex | ⊢ ( 𝐴  ∈  ℕ0  →  ( ( 𝐴 ↑ 2 )  =  1  →  𝐴  =  1 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 2 )  =  1  →  𝐴  =  1 ) ) | 
						
							| 79 |  | id | ⊢ ( ( 𝐴  =  1  ∧  𝐵  =  1 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) | 
						
							| 80 | 79 | ex | ⊢ ( 𝐴  =  1  →  ( 𝐵  =  1  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 81 | 78 80 | syl6 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 2 )  =  1  →  ( 𝐵  =  1  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 82 | 75 81 | sylbid | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  →  ( 𝐵  =  1  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 83 | 82 | com23 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐵  =  1  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 84 | 70 83 | syld | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐵 ↑ 2 )  =  1  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  1 )  →  ( ( 2  −  1 )  =  ( 𝐴 ↑ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 86 | 67 85 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( 𝐵 ↑ 2 )  =  1 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 87 | 86 | impancom | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  =  1  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 88 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 89 |  | nn0ge0 | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  𝐵 ) | 
						
							| 90 | 88 89 | sqrtsqd | ⊢ ( 𝐵  ∈  ℕ0  →  ( √ ‘ ( 𝐵 ↑ 2 ) )  =  𝐵 ) | 
						
							| 91 | 90 | eqcomd | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  =  ( √ ‘ ( 𝐵 ↑ 2 ) ) ) | 
						
							| 92 | 91 | eqeq1d | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  =  ( √ ‘ 2 )  ↔  ( √ ‘ ( 𝐵 ↑ 2 ) )  =  ( √ ‘ 2 ) ) ) | 
						
							| 93 | 88 | sqge0d | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 94 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 95 | 94 | a1i | ⊢ ( 𝐵  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 96 | 27 | a1i | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  2 ) | 
						
							| 97 |  | sqrt11 | ⊢ ( ( ( ( 𝐵 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝐵 ↑ 2 ) )  ∧  ( 2  ∈  ℝ  ∧  0  ≤  2 ) )  →  ( ( √ ‘ ( 𝐵 ↑ 2 ) )  =  ( √ ‘ 2 )  ↔  ( 𝐵 ↑ 2 )  =  2 ) ) | 
						
							| 98 | 3 93 95 96 97 | syl22anc | ⊢ ( 𝐵  ∈  ℕ0  →  ( ( √ ‘ ( 𝐵 ↑ 2 ) )  =  ( √ ‘ 2 )  ↔  ( 𝐵 ↑ 2 )  =  2 ) ) | 
						
							| 99 | 92 98 | bitrd | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  =  ( √ ‘ 2 )  ↔  ( 𝐵 ↑ 2 )  =  2 ) ) | 
						
							| 100 |  | id | ⊢ ( ( √ ‘ 2 )  =  𝐵  →  ( √ ‘ 2 )  =  𝐵 ) | 
						
							| 101 | 100 | eqcoms | ⊢ ( 𝐵  =  ( √ ‘ 2 )  →  ( √ ‘ 2 )  =  𝐵 ) | 
						
							| 102 | 101 | eleq1d | ⊢ ( 𝐵  =  ( √ ‘ 2 )  →  ( ( √ ‘ 2 )  ∈  ℚ  ↔  𝐵  ∈  ℚ ) ) | 
						
							| 103 | 102 | adantl | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐵  =  ( √ ‘ 2 ) )  →  ( ( √ ‘ 2 )  ∈  ℚ  ↔  𝐵  ∈  ℚ ) ) | 
						
							| 104 | 103 | notbid | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐵  =  ( √ ‘ 2 ) )  →  ( ¬  ( √ ‘ 2 )  ∈  ℚ  ↔  ¬  𝐵  ∈  ℚ ) ) | 
						
							| 105 |  | nn0z | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℤ ) | 
						
							| 106 |  | zq | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℚ ) | 
						
							| 107 | 105 106 | syl | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℚ ) | 
						
							| 108 | 107 | pm2.24d | ⊢ ( 𝐵  ∈  ℕ0  →  ( ¬  𝐵  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐵  =  ( √ ‘ 2 ) )  →  ( ¬  𝐵  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 110 | 104 109 | sylbid | ⊢ ( ( 𝐵  ∈  ℕ0  ∧  𝐵  =  ( √ ‘ 2 ) )  →  ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 111 | 110 | com12 | ⊢ ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( ( 𝐵  ∈  ℕ0  ∧  𝐵  =  ( √ ‘ 2 ) )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 112 | 111 | expd | ⊢ ( ¬  ( √ ‘ 2 )  ∈  ℚ  →  ( 𝐵  ∈  ℕ0  →  ( 𝐵  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 113 | 35 112 | sylbi | ⊢ ( ( √ ‘ 2 )  ∉  ℚ  →  ( 𝐵  ∈  ℕ0  →  ( 𝐵  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) ) | 
						
							| 114 | 34 113 | ax-mp | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  =  ( √ ‘ 2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 115 | 99 114 | sylbird | ⊢ ( 𝐵  ∈  ℕ0  →  ( ( 𝐵 ↑ 2 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 116 | 115 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 117 | 57 87 116 | 3jaod | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( ( 𝐵 ↑ 2 )  =  0  ∨  ( 𝐵 ↑ 2 )  =  1  ∨  ( 𝐵 ↑ 2 )  =  2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 118 | 13 117 | syld | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  ≤  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 119 | 9 118 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( ( 𝐵 ↑ 2 )  ≤  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 120 | 7 119 | mpd | ⊢ ( ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ∧  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 )  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) | 
						
							| 121 | 120 | ex | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  →  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) | 
						
							| 122 |  | oveq1 | ⊢ ( 𝐴  =  1  →  ( 𝐴 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 123 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 124 | 122 123 | eqtrdi | ⊢ ( 𝐴  =  1  →  ( 𝐴 ↑ 2 )  =  1 ) | 
						
							| 125 |  | oveq1 | ⊢ ( 𝐵  =  1  →  ( 𝐵 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 126 | 125 123 | eqtrdi | ⊢ ( 𝐵  =  1  →  ( 𝐵 ↑ 2 )  =  1 ) | 
						
							| 127 | 124 126 | oveqan12d | ⊢ ( ( 𝐴  =  1  ∧  𝐵  =  1 )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 1  +  1 ) ) | 
						
							| 128 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 129 | 127 128 | eqtrdi | ⊢ ( ( 𝐴  =  1  ∧  𝐵  =  1 )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2 ) | 
						
							| 130 | 121 129 | impbid1 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  2  ↔  ( 𝐴  =  1  ∧  𝐵  =  1 ) ) ) |