| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne | ⊢ ( 𝑃  ≠  2  ↔  ¬  𝑃  =  2 ) | 
						
							| 2 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 3 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  𝑃  ∈  ℤ ) | 
						
							| 4 |  | simplrr | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 5 |  | bezout | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) | 
						
							| 7 |  | simplll | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 8 |  | simpllr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 10 |  | simprll | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  𝑎  ∈  ℤ ) | 
						
							| 11 |  | simprlr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  𝑏  ∈  ℤ ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) | 
						
							| 13 | 7 8 9 10 11 12 | 2sqblem | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) ) ) )  →  ( 𝑃  mod  4 )  =  1 ) | 
						
							| 14 | 13 | expr | ⊢ ( ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 15 | 14 | rexlimdvva | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝑃  gcd  𝑦 )  =  ( ( 𝑃  ·  𝑎 )  +  ( 𝑦  ·  𝑏 ) )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 16 | 6 15 | mpd | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  ∧  𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ( 𝑃  mod  4 )  =  1 ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 18 | 17 | rexlimdvva | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 19 | 18 | impancom | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ( 𝑃  ≠  2  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 20 | 1 19 | biimtrrid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ( ¬  𝑃  =  2  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 21 | 20 | orrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  →  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 22 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 24 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 25 | 23 24 | eqtrdi | ⊢ ( 𝑥  =  1  →  ( 𝑥 ↑ 2 )  =  1 ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑥  =  1  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( 1  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑥  =  1  →  ( 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  ( 1  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑦  =  1  →  ( 𝑦 ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 29 | 28 24 | eqtrdi | ⊢ ( 𝑦  =  1  →  ( 𝑦 ↑ 2 )  =  1 ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑦  =  1  →  ( 1  +  ( 𝑦 ↑ 2 ) )  =  ( 1  +  1 ) ) | 
						
							| 31 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 32 | 30 31 | eqtrdi | ⊢ ( 𝑦  =  1  →  ( 1  +  ( 𝑦 ↑ 2 ) )  =  2 ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑦  =  1  →  ( 𝑃  =  ( 1  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  2 ) ) | 
						
							| 34 | 27 33 | rspc2ev | ⊢ ( ( 1  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑃  =  2 )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 35 | 22 22 34 | mp3an12 | ⊢ ( 𝑃  =  2  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  =  2 )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 37 |  | 2sq | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 38 | 36 37 | jaodan | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 39 | 21 38 | impbida | ⊢ ( 𝑃  ∈  ℙ  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) ) ) |