Step |
Hyp |
Ref |
Expression |
1 |
|
2sqcoprm.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
2 |
|
2sqcoprm.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
3 |
|
2sqcoprm.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
4 |
|
2sqcoprm.4 |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) |
5 |
1 2 3 4
|
2sqn0 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
6 |
2 3
|
gcdcld |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℤ ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
11 |
10
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ¬ 𝐴 = 0 ) |
12 |
11
|
intnanrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
13 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
14 |
8 9 12 13
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
15 |
14
|
nnsqcld |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ) |
16 |
6
|
nn0zd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
17 |
|
sqnprm |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℤ → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℙ ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℙ ) |
19 |
|
zsqcl |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℤ → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ) |
20 |
16 19
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ) |
21 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
23 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
24 |
3 23
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
25 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
26 |
2 3 25
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
27 |
26
|
simpld |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
28 |
|
dvdssqim |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
29 |
28
|
imp |
⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
30 |
16 2 27 29
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) |
31 |
26
|
simprd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
32 |
|
dvdssqim |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
33 |
32
|
imp |
⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) |
34 |
16 3 31 33
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) |
35 |
20 22 24 30 34
|
dvds2addd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
36 |
35 4
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ 𝑃 ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ 𝑃 ) |
38 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
39 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → 𝑃 ∈ ℙ ) |
40 |
|
dvdsprm |
⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ 𝑃 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 𝑃 ) ) |
41 |
38 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ 𝑃 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 𝑃 ) ) |
42 |
37 41
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 𝑃 ) |
43 |
42 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℙ ) |
44 |
18 43
|
mtand |
⊢ ( 𝜑 → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ) |
45 |
|
eluz2b3 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ) |
46 |
44 45
|
sylnib |
⊢ ( 𝜑 → ¬ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ) |
47 |
|
imnan |
⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ↔ ¬ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ) |
48 |
46 47
|
sylibr |
⊢ ( 𝜑 → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) ) |
50 |
15 49
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ) |
51 |
|
df-ne |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 1 ↔ ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 1 ) |
52 |
50 51
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ¬ ¬ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 1 ) |
53 |
52
|
notnotrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 1 ) |
54 |
|
nn0sqeq1 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = 1 ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
55 |
7 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
56 |
5 55
|
mpdan |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |