| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqcoprm.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | 2sqcoprm.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | 2sqcoprm.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | 2sqcoprm.4 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  𝑃 ) | 
						
							| 5 | 1 2 3 4 | 2sqn0 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 6 | 2 3 | gcdcld | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℤ ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  𝐵  ∈  ℤ ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  𝐴  ≠  0 ) | 
						
							| 11 | 10 | neneqd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ¬  𝐴  =  0 ) | 
						
							| 12 | 11 | intnanrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 13 |  | gcdn0cl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 14 | 8 9 12 13 | syl21anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 15 | 14 | nnsqcld | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ ) | 
						
							| 16 | 6 | nn0zd | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  ∈  ℤ ) | 
						
							| 17 |  | sqnprm | ⊢ ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℙ ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℙ ) | 
						
							| 19 |  | zsqcl | ⊢ ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℤ ) | 
						
							| 20 | 16 19 | syl | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℤ ) | 
						
							| 21 |  | zsqcl | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  ( 𝐴 ↑ 2 )  ∈  ℤ ) | 
						
							| 23 |  | zsqcl | ⊢ ( 𝐵  ∈  ℤ  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 24 | 3 23 | syl | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℤ ) | 
						
							| 25 |  | gcddvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 26 | 2 3 25 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 28 |  | dvdssqim | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐴 ↑ 2 ) ) ) | 
						
							| 29 | 28 | imp | ⊢ ( ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐴 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐴 ↑ 2 ) ) | 
						
							| 30 | 16 2 27 29 | syl21anc | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐴 ↑ 2 ) ) | 
						
							| 31 | 26 | simprd | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) | 
						
							| 32 |  | dvdssqim | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) ) | 
						
							| 34 | 16 3 31 33 | syl21anc | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( 𝐵 ↑ 2 ) ) | 
						
							| 35 | 20 22 24 30 34 | dvds2addd | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 36 | 35 4 | breqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  𝑃 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  𝑃 ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 39 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 40 |  | dvdsprm | ⊢ ( ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  𝑃  ↔  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  𝑃 ) ) | 
						
							| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∥  𝑃  ↔  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  𝑃 ) ) | 
						
							| 42 | 37 41 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  𝑃 ) | 
						
							| 43 | 42 39 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℙ ) | 
						
							| 44 | 18 43 | mtand | ⊢ ( 𝜑  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 45 |  | eluz2b3 | ⊢ ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) ) | 
						
							| 46 | 44 45 | sylnib | ⊢ ( 𝜑  →  ¬  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) ) | 
						
							| 47 |  | imnan | ⊢ ( ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 )  ↔  ¬  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) ) | 
						
							| 48 | 46 47 | sylibr | ⊢ ( 𝜑  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ∈  ℕ  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) ) | 
						
							| 50 | 15 49 | mpd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1 ) | 
						
							| 51 |  | df-ne | ⊢ ( ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  ≠  1  ↔  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  1 ) | 
						
							| 52 | 50 51 | sylnib | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ¬  ¬  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  1 ) | 
						
							| 53 | 52 | notnotrd | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  1 ) | 
						
							| 54 |  | nn0sqeq1 | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℕ0  ∧  ( ( 𝐴  gcd  𝐵 ) ↑ 2 )  =  1 )  →  ( 𝐴  gcd  𝐵 )  =  1 ) | 
						
							| 55 | 7 53 54 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  =  1 ) | 
						
							| 56 | 5 55 | mpdan | ⊢ ( 𝜑  →  ( 𝐴  gcd  𝐵 )  =  1 ) |