| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2sq.1 | 
							⊢ 𝑆  =  ran  ( 𝑤  ∈  ℤ[i]  ↦  ( ( abs ‘ 𝑤 ) ↑ 2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							2sqlem7.2 | 
							⊢ 𝑌  =  { 𝑧  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑏  =  𝐵  →  ( 𝑏  ∥  𝑎  ↔  𝐵  ∥  𝑎 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑏  =  𝐵  →  ( 𝑏  ∈  𝑆  ↔  𝐵  ∈  𝑆 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							imbi12d | 
							⊢ ( 𝑏  =  𝐵  →  ( ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ( 𝐵  ∥  𝑎  →  𝐵  ∈  𝑆 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ralbidv | 
							⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑎  ∈  𝑌 ( 𝐵  ∥  𝑎  →  𝐵  ∈  𝑆 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  1  →  ( 1 ... 𝑚 )  =  ( 1 ... 1 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  1  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑚 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑏  ∈  ( 1 ... 1 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝑛  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝑛 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  𝑛  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑚 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 1 ... 𝑚 )  =  ( 1 ... ( 𝑛  +  1 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑚 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑏  ∈  ( 1 ... ( 𝑛  +  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑚  =  𝐵  →  ( 1 ... 𝑚 )  =  ( 1 ... 𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							raleqdv | 
							⊢ ( 𝑚  =  𝐵  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑚 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑏  ∈  ( 1 ... 𝐵 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elfz1eq | 
							⊢ ( 𝑏  ∈  ( 1 ... 1 )  →  𝑏  =  1 )  | 
						
						
							| 16 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 17 | 
							
								
							 | 
							zgz | 
							⊢ ( 1  ∈  ℤ  →  1  ∈  ℤ[i] )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							ax-mp | 
							⊢ 1  ∈  ℤ[i]  | 
						
						
							| 19 | 
							
								
							 | 
							sq1 | 
							⊢ ( 1 ↑ 2 )  =  1  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomi | 
							⊢ 1  =  ( 1 ↑ 2 )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							abs1 | 
							⊢ ( abs ‘ 1 )  =  1  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  1 )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  1  →  ( ( abs ‘ 𝑥 ) ↑ 2 )  =  ( 1 ↑ 2 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							rspceeqv | 
							⊢ ( ( 1  ∈  ℤ[i]  ∧  1  =  ( 1 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 ) )  | 
						
						
							| 26 | 
							
								18 20 25
							 | 
							mp2an | 
							⊢ ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 )  | 
						
						
							| 27 | 
							
								1
							 | 
							2sqlem1 | 
							⊢ ( 1  ∈  𝑆  ↔  ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mpbir | 
							⊢ 1  ∈  𝑆  | 
						
						
							| 29 | 
							
								15 28
							 | 
							eqeltrdi | 
							⊢ ( 𝑏  ∈  ( 1 ... 1 )  →  𝑏  ∈  𝑆 )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1d | 
							⊢ ( 𝑏  ∈  ( 1 ... 1 )  →  ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralrimivw | 
							⊢ ( 𝑏  ∈  ( 1 ... 1 )  →  ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rgen | 
							⊢ ∀ 𝑏  ∈  ( 1 ... 1 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  | 
						
						
							| 33 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ )  | 
						
						
							| 35 | 
							
								34
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  𝑛  ∈  ℂ )  | 
						
						
							| 36 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 37 | 
							
								
							 | 
							pncan | 
							⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							sylancl | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq2d | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) )  =  ( 1 ... 𝑛 ) )  | 
						
						
							| 40 | 
							
								33 39
							 | 
							raleqtrrdv | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ∀ 𝑏  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ( 𝑛  +  1 )  ∥  𝑚 )  | 
						
						
							| 42 | 
							
								
							 | 
							peano2nn | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ )  | 
						
						
							| 43 | 
							
								42
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ( 𝑛  +  1 )  ∈  ℕ )  | 
						
						
							| 44 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  𝑚  ∈  𝑌 )  | 
						
						
							| 45 | 
							
								1 2 40 41 43 44
							 | 
							2sqlem9 | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  ( 𝑚  ∈  𝑌  ∧  ( 𝑛  +  1 )  ∥  𝑚 ) )  →  ( 𝑛  +  1 )  ∈  𝑆 )  | 
						
						
							| 46 | 
							
								45
							 | 
							expr | 
							⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  ∧  𝑚  ∈  𝑌 )  →  ( ( 𝑛  +  1 )  ∥  𝑚  →  ( 𝑛  +  1 )  ∈  𝑆 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ralrimiva | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  →  ∀ 𝑚  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑚  →  ( 𝑛  +  1 )  ∈  𝑆 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							ex | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  →  ∀ 𝑚  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑚  →  ( 𝑛  +  1 )  ∈  𝑆 ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑎  =  𝑚  →  ( ( 𝑛  +  1 )  ∥  𝑎  ↔  ( 𝑛  +  1 )  ∥  𝑚 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imbi1d | 
							⊢ ( 𝑎  =  𝑚  →  ( ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 )  ↔  ( ( 𝑛  +  1 )  ∥  𝑚  →  ( 𝑛  +  1 )  ∈  𝑆 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑎  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 )  ↔  ∀ 𝑚  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑚  →  ( 𝑛  +  1 )  ∈  𝑆 ) )  | 
						
						
							| 52 | 
							
								48 51
							 | 
							imbitrrdi | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  →  ∀ 𝑎  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑛  +  1 )  ∈  V  | 
						
						
							| 54 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑏  =  ( 𝑛  +  1 )  →  ( 𝑏  ∥  𝑎  ↔  ( 𝑛  +  1 )  ∥  𝑎 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑏  =  ( 𝑛  +  1 )  →  ( 𝑏  ∈  𝑆  ↔  ( 𝑛  +  1 )  ∈  𝑆 ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							imbi12d | 
							⊢ ( 𝑏  =  ( 𝑛  +  1 )  →  ( ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							ralbidv | 
							⊢ ( 𝑏  =  ( 𝑛  +  1 )  →  ( ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑎  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 ) ) )  | 
						
						
							| 58 | 
							
								53 57
							 | 
							ralsn | 
							⊢ ( ∀ 𝑏  ∈  { ( 𝑛  +  1 ) } ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑎  ∈  𝑌 ( ( 𝑛  +  1 )  ∥  𝑎  →  ( 𝑛  +  1 )  ∈  𝑆 ) )  | 
						
						
							| 59 | 
							
								52 58
							 | 
							imbitrrdi | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  →  ∀ 𝑏  ∈  { ( 𝑛  +  1 ) } ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							ancld | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ∧  ∀ 𝑏  ∈  { ( 𝑛  +  1 ) } ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							elnnuz | 
							⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							fzsuc | 
							⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... ( 𝑛  +  1 ) )  =  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							sylbi | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 1 ... ( 𝑛  +  1 ) )  =  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							raleqdv | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... ( 𝑛  +  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ∀ 𝑏  ∈  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							ralunb | 
							⊢ ( ∀ 𝑏  ∈  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ∧  ∀ 𝑏  ∈  { ( 𝑛  +  1 ) } ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							bitrdi | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... ( 𝑛  +  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ↔  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  ∧  ∀ 𝑏  ∈  { ( 𝑛  +  1 ) } ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) ) )  | 
						
						
							| 67 | 
							
								60 66
							 | 
							sylibrd | 
							⊢ ( 𝑛  ∈  ℕ  →  ( ∀ 𝑏  ∈  ( 1 ... 𝑛 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 )  →  ∀ 𝑏  ∈  ( 1 ... ( 𝑛  +  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) ) )  | 
						
						
							| 68 | 
							
								8 10 12 14 32 67
							 | 
							nnind | 
							⊢ ( 𝐵  ∈  ℕ  →  ∀ 𝑏  ∈  ( 1 ... 𝐵 ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 69 | 
							
								
							 | 
							elfz1end | 
							⊢ ( 𝐵  ∈  ℕ  ↔  𝐵  ∈  ( 1 ... 𝐵 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							biimpi | 
							⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ( 1 ... 𝐵 ) )  | 
						
						
							| 71 | 
							
								6 68 70
							 | 
							rspcdva | 
							⊢ ( 𝐵  ∈  ℕ  →  ∀ 𝑎  ∈  𝑌 ( 𝐵  ∥  𝑎  →  𝐵  ∈  𝑆 ) )  | 
						
						
							| 72 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑎  =  𝐴  →  ( 𝐵  ∥  𝑎  ↔  𝐵  ∥  𝐴 ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							imbi1d | 
							⊢ ( 𝑎  =  𝐴  →  ( ( 𝐵  ∥  𝑎  →  𝐵  ∈  𝑆 )  ↔  ( 𝐵  ∥  𝐴  →  𝐵  ∈  𝑆 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							rspcv | 
							⊢ ( 𝐴  ∈  𝑌  →  ( ∀ 𝑎  ∈  𝑌 ( 𝐵  ∥  𝑎  →  𝐵  ∈  𝑆 )  →  ( 𝐵  ∥  𝐴  →  𝐵  ∈  𝑆 ) ) )  | 
						
						
							| 75 | 
							
								71 74
							 | 
							syl5 | 
							⊢ ( 𝐴  ∈  𝑌  →  ( 𝐵  ∈  ℕ  →  ( 𝐵  ∥  𝐴  →  𝐵  ∈  𝑆 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							3imp | 
							⊢ ( ( 𝐴  ∈  𝑌  ∧  𝐵  ∈  ℕ  ∧  𝐵  ∥  𝐴 )  →  𝐵  ∈  𝑆 )  |