| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2sq.1 | 
							⊢ 𝑆  =  ran  ( 𝑤  ∈  ℤ[i]  ↦  ( ( abs ‘ 𝑤 ) ↑ 2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							2sqlem7.2 | 
							⊢ 𝑌  =  { 𝑧  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( 𝑃  mod  4 )  =  1 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  𝑃  ∈  ℙ )  | 
						
						
							| 5 | 
							
								
							 | 
							1ne2 | 
							⊢ 1  ≠  2  | 
						
						
							| 6 | 
							
								5
							 | 
							necomi | 
							⊢ 2  ≠  1  | 
						
						
							| 7 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑃  =  2  →  ( 𝑃  mod  4 )  =  ( 2  mod  4 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 9 | 
							
								
							 | 
							4re | 
							⊢ 4  ∈  ℝ  | 
						
						
							| 10 | 
							
								
							 | 
							4pos | 
							⊢ 0  <  4  | 
						
						
							| 11 | 
							
								9 10
							 | 
							elrpii | 
							⊢ 4  ∈  ℝ+  | 
						
						
							| 12 | 
							
								
							 | 
							0le2 | 
							⊢ 0  ≤  2  | 
						
						
							| 13 | 
							
								
							 | 
							2lt4 | 
							⊢ 2  <  4  | 
						
						
							| 14 | 
							
								
							 | 
							modid | 
							⊢ ( ( ( 2  ∈  ℝ  ∧  4  ∈  ℝ+ )  ∧  ( 0  ≤  2  ∧  2  <  4 ) )  →  ( 2  mod  4 )  =  2 )  | 
						
						
							| 15 | 
							
								8 11 12 13 14
							 | 
							mp4an | 
							⊢ ( 2  mod  4 )  =  2  | 
						
						
							| 16 | 
							
								7 15
							 | 
							eqtrdi | 
							⊢ ( 𝑃  =  2  →  ( 𝑃  mod  4 )  =  2 )  | 
						
						
							| 17 | 
							
								16
							 | 
							neeq1d | 
							⊢ ( 𝑃  =  2  →  ( ( 𝑃  mod  4 )  ≠  1  ↔  2  ≠  1 ) )  | 
						
						
							| 18 | 
							
								6 17
							 | 
							mpbiri | 
							⊢ ( 𝑃  =  2  →  ( 𝑃  mod  4 )  ≠  1 )  | 
						
						
							| 19 | 
							
								18
							 | 
							necon2i | 
							⊢ ( ( 𝑃  mod  4 )  =  1  →  𝑃  ≠  2 )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							syl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  𝑃  ≠  2 )  | 
						
						
							| 21 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) )  | 
						
						
							| 22 | 
							
								4 20 21
							 | 
							sylanbrc | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  | 
						
						
							| 23 | 
							
								
							 | 
							m1lgs | 
							⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( - 1  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  4 )  =  1 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ( - 1  /L  𝑃 )  =  1  ↔  ( 𝑃  mod  4 )  =  1 ) )  | 
						
						
							| 25 | 
							
								3 24
							 | 
							mpbird | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( - 1  /L  𝑃 )  =  1 )  | 
						
						
							| 26 | 
							
								
							 | 
							neg1z | 
							⊢ - 1  ∈  ℤ  | 
						
						
							| 27 | 
							
								
							 | 
							lgsqr | 
							⊢ ( ( - 1  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( - 1  /L  𝑃 )  =  1  ↔  ( ¬  𝑃  ∥  - 1  ∧  ∃ 𝑛  ∈  ℤ 𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) ) )  | 
						
						
							| 28 | 
							
								26 22 27
							 | 
							sylancr | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ( - 1  /L  𝑃 )  =  1  ↔  ( ¬  𝑃  ∥  - 1  ∧  ∃ 𝑛  ∈  ℤ 𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							mpbid | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ¬  𝑃  ∥  - 1  ∧  ∃ 𝑛  ∈  ℤ 𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							simprd | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑛  ∈  ℤ 𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑛  ∈  ℤ )  | 
						
						
							| 32 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  1  ∈  ℤ )  | 
						
						
							| 33 | 
							
								
							 | 
							gcd1 | 
							⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  gcd  1 )  =  1 )  | 
						
						
							| 34 | 
							
								33
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ( 𝑛  gcd  1 )  =  1 )  | 
						
						
							| 35 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑛  →  ( 𝑥  gcd  𝑦 )  =  ( 𝑛  gcd  𝑦 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑛  →  ( ( 𝑥  gcd  𝑦 )  =  1  ↔  ( 𝑛  gcd  𝑦 )  =  1 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑛  →  ( 𝑥 ↑ 2 )  =  ( 𝑛 ↑ 2 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  𝑛  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑛  →  ( ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 41 | 
							
								37 40
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑛  →  ( ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑛  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  1  →  ( 𝑛  gcd  𝑦 )  =  ( 𝑛  gcd  1 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqeq1d | 
							⊢ ( 𝑦  =  1  →  ( ( 𝑛  gcd  𝑦 )  =  1  ↔  ( 𝑛  gcd  1 )  =  1 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  1  →  ( 𝑦 ↑ 2 )  =  ( 1 ↑ 2 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							sq1 | 
							⊢ ( 1 ↑ 2 )  =  1  | 
						
						
							| 46 | 
							
								44 45
							 | 
							eqtrdi | 
							⊢ ( 𝑦  =  1  →  ( 𝑦 ↑ 2 )  =  1 )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							⊢ ( 𝑦  =  1  →  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑛 ↑ 2 )  +  1 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  1  →  ( ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) ) )  | 
						
						
							| 49 | 
							
								43 48
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  1  →  ( ( ( 𝑛  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑛  gcd  1 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) ) ) )  | 
						
						
							| 50 | 
							
								41 49
							 | 
							rspc2ev | 
							⊢ ( ( 𝑛  ∈  ℤ  ∧  1  ∈  ℤ  ∧  ( ( 𝑛  gcd  1 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 51 | 
							
								31 32 34 35 50
							 | 
							syl112anc | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							ovex | 
							⊢ ( ( 𝑛 ↑ 2 )  +  1 )  ∈  V  | 
						
						
							| 53 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  ( ( 𝑛 ↑ 2 )  +  1 )  →  ( 𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							anbi2d | 
							⊢ ( 𝑧  =  ( ( 𝑛 ↑ 2 )  +  1 )  →  ( ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							2rexbidv | 
							⊢ ( 𝑧  =  ( ( 𝑛 ↑ 2 )  +  1 )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 56 | 
							
								52 55 2
							 | 
							elab2 | 
							⊢ ( ( ( 𝑛 ↑ 2 )  +  1 )  ∈  𝑌  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  ( ( 𝑛 ↑ 2 )  +  1 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 57 | 
							
								51 56
							 | 
							sylibr | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ( ( 𝑛 ↑ 2 )  +  1 )  ∈  𝑌 )  | 
						
						
							| 58 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑃  ∈  ℕ )  | 
						
						
							| 60 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) )  | 
						
						
							| 61 | 
							
								31
							 | 
							zcnd | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑛  ∈  ℂ )  | 
						
						
							| 62 | 
							
								61
							 | 
							sqcld | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ( 𝑛 ↑ 2 )  ∈  ℂ )  | 
						
						
							| 63 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 64 | 
							
								
							 | 
							subneg | 
							⊢ ( ( ( 𝑛 ↑ 2 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛 ↑ 2 )  −  - 1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) )  | 
						
						
							| 65 | 
							
								62 63 64
							 | 
							sylancl | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  ( ( 𝑛 ↑ 2 )  −  - 1 )  =  ( ( 𝑛 ↑ 2 )  +  1 ) )  | 
						
						
							| 66 | 
							
								60 65
							 | 
							breqtrd | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑃  ∥  ( ( 𝑛 ↑ 2 )  +  1 ) )  | 
						
						
							| 67 | 
							
								1 2
							 | 
							2sqlem10 | 
							⊢ ( ( ( ( 𝑛 ↑ 2 )  +  1 )  ∈  𝑌  ∧  𝑃  ∈  ℕ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  +  1 ) )  →  𝑃  ∈  𝑆 )  | 
						
						
							| 68 | 
							
								57 59 66 67
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  ∧  ( 𝑛  ∈  ℤ  ∧  𝑃  ∥  ( ( 𝑛 ↑ 2 )  −  - 1 ) ) )  →  𝑃  ∈  𝑆 )  | 
						
						
							| 69 | 
							
								30 68
							 | 
							rexlimddv | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  𝑃  ∈  𝑆 )  |