| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq.1 | ⊢ 𝑆  =  ran  ( 𝑤  ∈  ℤ[i]  ↦  ( ( abs ‘ 𝑤 ) ↑ 2 ) ) | 
						
							| 2 | 1 | 2sqlem1 | ⊢ ( 𝐴  ∈  𝑆  ↔  ∃ 𝑧  ∈  ℤ[i] 𝐴  =  ( ( abs ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 3 |  | elgz | ⊢ ( 𝑧  ∈  ℤ[i]  ↔  ( 𝑧  ∈  ℂ  ∧  ( ℜ ‘ 𝑧 )  ∈  ℤ  ∧  ( ℑ ‘ 𝑧 )  ∈  ℤ ) ) | 
						
							| 4 | 3 | simp2bi | ⊢ ( 𝑧  ∈  ℤ[i]  →  ( ℜ ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 5 | 3 | simp3bi | ⊢ ( 𝑧  ∈  ℤ[i]  →  ( ℑ ‘ 𝑧 )  ∈  ℤ ) | 
						
							| 6 |  | gzcn | ⊢ ( 𝑧  ∈  ℤ[i]  →  𝑧  ∈  ℂ ) | 
						
							| 7 | 6 | absvalsq2d | ⊢ ( 𝑧  ∈  ℤ[i]  →  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( ( ℑ ‘ 𝑧 ) ↑ 2 ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑥  =  ( ℜ ‘ 𝑧 )  →  ( 𝑥 ↑ 2 )  =  ( ( ℜ ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑥  =  ( ℜ ‘ 𝑧 )  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑥  =  ( ℜ ‘ 𝑧 )  →  ( ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑦  =  ( ℑ ‘ 𝑧 )  →  ( 𝑦 ↑ 2 )  =  ( ( ℑ ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑦  =  ( ℑ ‘ 𝑧 )  →  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( ( ℑ ‘ 𝑧 ) ↑ 2 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑦  =  ( ℑ ‘ 𝑧 )  →  ( ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( ( ℑ ‘ 𝑧 ) ↑ 2 ) ) ) ) | 
						
							| 14 | 10 13 | rspc2ev | ⊢ ( ( ( ℜ ‘ 𝑧 )  ∈  ℤ  ∧  ( ℑ ‘ 𝑧 )  ∈  ℤ  ∧  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( ( ℜ ‘ 𝑧 ) ↑ 2 )  +  ( ( ℑ ‘ 𝑧 ) ↑ 2 ) ) )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 15 | 4 5 7 14 | syl3anc | ⊢ ( 𝑧  ∈  ℤ[i]  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 16 |  | eqeq1 | ⊢ ( 𝐴  =  ( ( abs ‘ 𝑧 ) ↑ 2 )  →  ( 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 17 | 16 | 2rexbidv | ⊢ ( 𝐴  =  ( ( abs ‘ 𝑧 ) ↑ 2 )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 18 | 15 17 | syl5ibrcom | ⊢ ( 𝑧  ∈  ℤ[i]  →  ( 𝐴  =  ( ( abs ‘ 𝑧 ) ↑ 2 )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 19 | 18 | rexlimiv | ⊢ ( ∃ 𝑧  ∈  ℤ[i] 𝐴  =  ( ( abs ‘ 𝑧 ) ↑ 2 )  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 20 | 2 19 | sylbi | ⊢ ( 𝐴  ∈  𝑆  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 21 |  | gzreim | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  ( i  ·  𝑦 ) )  ∈  ℤ[i] ) | 
						
							| 22 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 23 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 24 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 25 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( i  ·  𝑦 )  ∈  ℂ ) | 
						
							| 26 | 23 24 25 | sylancr | ⊢ ( 𝑦  ∈  ℤ  →  ( i  ·  𝑦 )  ∈  ℂ ) | 
						
							| 27 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( i  ·  𝑦 )  ∈  ℂ )  →  ( 𝑥  +  ( i  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 28 | 22 26 27 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  +  ( i  ·  𝑦 ) )  ∈  ℂ ) | 
						
							| 29 | 28 | absvalsq2d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( abs ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 )  =  ( ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 )  +  ( ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 ) ) ) | 
						
							| 30 |  | zre | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ ) | 
						
							| 31 |  | zre | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℝ ) | 
						
							| 32 |  | crre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑥 ) | 
						
							| 33 | 30 31 32 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑥 ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 )  =  ( 𝑥 ↑ 2 ) ) | 
						
							| 35 |  | crim | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑦 ) | 
						
							| 36 | 30 31 35 | syl2an | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑦 ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 )  =  ( 𝑦 ↑ 2 ) ) | 
						
							| 38 | 34 37 | oveq12d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 )  +  ( ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 ) )  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 39 | 29 38 | eqtr2d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( abs ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑧  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( abs ‘ 𝑧 )  =  ( abs ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( 𝑧  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( ( abs ‘ 𝑧 ) ↑ 2 )  =  ( ( abs ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 ) ) | 
						
							| 42 | 41 | rspceeqv | ⊢ ( ( ( 𝑥  +  ( i  ·  𝑦 ) )  ∈  ℤ[i]  ∧  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( abs ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ↑ 2 ) )  →  ∃ 𝑧  ∈  ℤ[i] ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( abs ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 43 | 21 39 42 | syl2anc | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ∃ 𝑧  ∈  ℤ[i] ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( abs ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 44 | 1 | 2sqlem1 | ⊢ ( ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ∈  𝑆  ↔  ∃ 𝑧  ∈  ℤ[i] ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( abs ‘ 𝑧 ) ↑ 2 ) ) | 
						
							| 45 | 43 44 | sylibr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ∈  𝑆 ) | 
						
							| 46 |  | eleq1 | ⊢ ( 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  →  ( 𝐴  ∈  𝑆  ↔  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ∈  𝑆 ) ) | 
						
							| 47 | 45 46 | syl5ibrcom | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  →  𝐴  ∈  𝑆 ) ) | 
						
							| 48 | 47 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  →  𝐴  ∈  𝑆 ) | 
						
							| 49 | 20 48 | impbii | ⊢ ( 𝐴  ∈  𝑆  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ 𝐴  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) |