Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
⊢ 𝑆 = ran ( 𝑤 ∈ ℤ[i] ↦ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
2 |
|
2sqlem7.2 |
⊢ 𝑌 = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) } |
3 |
|
simpr |
⊢ ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
4 |
3
|
reximi |
⊢ ( ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
6 |
1
|
2sqlem2 |
⊢ ( 𝑧 ∈ 𝑆 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
7 |
5 6
|
sylibr |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑧 ∈ 𝑆 ) |
8 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
9 |
|
gcdeq0 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 gcd 𝑦 ) = 0 ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( 𝑥 gcd 𝑦 ) = 0 ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑥 gcd 𝑦 ) = 1 ) |
12 |
11
|
eqeq1d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( 𝑥 gcd 𝑦 ) = 0 ↔ 1 = 0 ) ) |
13 |
10 12
|
bitr3d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) ↔ 1 = 0 ) ) |
14 |
13
|
necon3bbid |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ↔ 1 ≠ 0 ) ) |
15 |
8 14
|
mpbiri |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) |
16 |
|
zsqcl2 |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ↑ 2 ) ∈ ℕ0 ) |
17 |
16
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑥 ↑ 2 ) ∈ ℕ0 ) |
18 |
17
|
nn0red |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
19 |
17
|
nn0ge0d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → 0 ≤ ( 𝑥 ↑ 2 ) ) |
20 |
|
zsqcl2 |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ↑ 2 ) ∈ ℕ0 ) |
21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑦 ↑ 2 ) ∈ ℕ0 ) |
22 |
21
|
nn0red |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
23 |
21
|
nn0ge0d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → 0 ≤ ( 𝑦 ↑ 2 ) ) |
24 |
|
add20 |
⊢ ( ( ( ( 𝑥 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 ↑ 2 ) ) ∧ ( ( 𝑦 ↑ 2 ) ∈ ℝ ∧ 0 ≤ ( 𝑦 ↑ 2 ) ) ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ↔ ( ( 𝑥 ↑ 2 ) = 0 ∧ ( 𝑦 ↑ 2 ) = 0 ) ) ) |
25 |
18 19 22 23 24
|
syl22anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ↔ ( ( 𝑥 ↑ 2 ) = 0 ∧ ( 𝑦 ↑ 2 ) = 0 ) ) ) |
26 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → 𝑥 ∈ ℂ ) |
28 |
|
zcn |
⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ ) |
29 |
28
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → 𝑦 ∈ ℂ ) |
30 |
|
sqeq0 |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 ↑ 2 ) = 0 ↔ 𝑥 = 0 ) ) |
31 |
|
sqeq0 |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 ↔ 𝑦 = 0 ) ) |
32 |
30 31
|
bi2anan9 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ( 𝑦 ↑ 2 ) = 0 ) ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
33 |
27 29 32
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ( 𝑦 ↑ 2 ) = 0 ) ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
34 |
25 33
|
bitrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ↔ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
35 |
15 34
|
mtbird |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ¬ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ) |
36 |
|
nn0addcl |
⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℕ0 ∧ ( 𝑦 ↑ 2 ) ∈ ℕ0 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
37 |
16 20 36
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
39 |
|
elnn0 |
⊢ ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ↔ ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ ∨ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ) ) |
40 |
38 39
|
sylib |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ ∨ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ) ) |
41 |
40
|
ord |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ¬ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = 0 ) ) |
42 |
35 41
|
mt3d |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ ) |
43 |
|
eleq1 |
⊢ ( 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( 𝑧 ∈ ℕ ↔ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ ) ) |
44 |
42 43
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑥 gcd 𝑦 ) = 1 ) → ( 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → 𝑧 ∈ ℕ ) ) |
45 |
44
|
expimpd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑧 ∈ ℕ ) ) |
46 |
45
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑧 ∈ ℕ ) |
47 |
7 46
|
elind |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑧 ∈ ( 𝑆 ∩ ℕ ) ) |
48 |
47
|
abssi |
⊢ { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) } ⊆ ( 𝑆 ∩ ℕ ) |
49 |
2 48
|
eqsstri |
⊢ 𝑌 ⊆ ( 𝑆 ∩ ℕ ) |