| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							2sq.1 | 
							⊢ 𝑆  =  ran  ( 𝑤  ∈  ℤ[i]  ↦  ( ( abs ‘ 𝑤 ) ↑ 2 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							2sqlem7.2 | 
							⊢ 𝑌  =  { 𝑧  ∣  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) }  | 
						
						
							| 3 | 
							
								
							 | 
							2sqlem9.5 | 
							⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 1 ... ( 𝑀  −  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							2sqlem9.7 | 
							⊢ ( 𝜑  →  𝑀  ∥  𝑁 )  | 
						
						
							| 5 | 
							
								
							 | 
							2sqlem9.6 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 6 | 
							
								
							 | 
							2sqlem9.4 | 
							⊢ ( 𝜑  →  𝑁  ∈  𝑌 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  𝑁  →  ( 𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi2d | 
							⊢ ( 𝑧  =  𝑁  →  ( ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							2rexbidv | 
							⊢ ( 𝑧  =  𝑁  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑥  gcd  𝑦 )  =  ( 𝑢  gcd  𝑦 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥  gcd  𝑦 )  =  1  ↔  ( 𝑢  gcd  𝑦 )  =  1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑥 ↑ 2 )  =  ( 𝑢 ↑ 2 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  𝑢  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑢  →  ( 𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝑢  →  ( ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑢  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑢  gcd  𝑦 )  =  ( 𝑢  gcd  𝑣 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq1d | 
							⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢  gcd  𝑦 )  =  1  ↔  ( 𝑢  gcd  𝑣 )  =  1 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑦 ↑ 2 )  =  ( 𝑣 ↑ 2 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq2d | 
							⊢ ( 𝑦  =  𝑣  →  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  𝑣  →  ( 𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  𝑣  →  ( ( ( 𝑢  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) ) )  | 
						
						
							| 22 | 
							
								15 21
							 | 
							cbvrex2vw | 
							⊢ ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑁  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  | 
						
						
							| 23 | 
							
								9 22
							 | 
							bitrdi | 
							⊢ ( 𝑧  =  𝑁  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℤ ( ( 𝑥  gcd  𝑦 )  =  1  ∧  𝑧  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) )  ↔  ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) ) )  | 
						
						
							| 24 | 
							
								23 2
							 | 
							elab2g | 
							⊢ ( 𝑁  ∈  𝑌  →  ( 𝑁  ∈  𝑌  ↔  ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ibi | 
							⊢ ( 𝑁  ∈  𝑌  →  ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  | 
						
						
							| 26 | 
							
								6 25
							 | 
							syl | 
							⊢ ( 𝜑  →  ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  ∧  𝑀  =  1 )  →  𝑀  =  1 )  | 
						
						
							| 28 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 29 | 
							
								
							 | 
							zgz | 
							⊢ ( 1  ∈  ℤ  →  1  ∈  ℤ[i] )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							ax-mp | 
							⊢ 1  ∈  ℤ[i]  | 
						
						
							| 31 | 
							
								
							 | 
							sq1 | 
							⊢ ( 1 ↑ 2 )  =  1  | 
						
						
							| 32 | 
							
								31
							 | 
							eqcomi | 
							⊢ 1  =  ( 1 ↑ 2 )  | 
						
						
							| 33 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  ( abs ‘ 1 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							abs1 | 
							⊢ ( abs ‘ 1 )  =  1  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  1  →  ( abs ‘ 𝑥 )  =  1 )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq1d | 
							⊢ ( 𝑥  =  1  →  ( ( abs ‘ 𝑥 ) ↑ 2 )  =  ( 1 ↑ 2 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rspceeqv | 
							⊢ ( ( 1  ∈  ℤ[i]  ∧  1  =  ( 1 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 ) )  | 
						
						
							| 38 | 
							
								30 32 37
							 | 
							mp2an | 
							⊢ ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 )  | 
						
						
							| 39 | 
							
								1
							 | 
							2sqlem1 | 
							⊢ ( 1  ∈  𝑆  ↔  ∃ 𝑥  ∈  ℤ[i] 1  =  ( ( abs ‘ 𝑥 ) ↑ 2 ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							mpbir | 
							⊢ 1  ∈  𝑆  | 
						
						
							| 41 | 
							
								27 40
							 | 
							eqeltrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  ∧  𝑀  =  1 )  →  𝑀  ∈  𝑆 )  | 
						
						
							| 42 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  ∀ 𝑏  ∈  ( 1 ... ( 𝑀  −  1 ) ) ∀ 𝑎  ∈  𝑌 ( 𝑏  ∥  𝑎  →  𝑏  ∈  𝑆 ) )  | 
						
						
							| 43 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑀  ∥  𝑁 )  | 
						
						
							| 44 | 
							
								1 2
							 | 
							2sqlem7 | 
							⊢ 𝑌  ⊆  ( 𝑆  ∩  ℕ )  | 
						
						
							| 45 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑆  ∩  ℕ )  ⊆  ℕ  | 
						
						
							| 46 | 
							
								44 45
							 | 
							sstri | 
							⊢ 𝑌  ⊆  ℕ  | 
						
						
							| 47 | 
							
								46 6
							 | 
							sselid | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑁  ∈  ℕ )  | 
						
						
							| 49 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 50 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑀  ≠  1 )  | 
						
						
							| 51 | 
							
								
							 | 
							eluz2b3 | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑀  ∈  ℕ  ∧  𝑀  ≠  1 ) )  | 
						
						
							| 52 | 
							
								49 50 51
							 | 
							sylanbrc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 2 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑢  ∈  ℤ )  | 
						
						
							| 54 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑣  ∈  ℤ )  | 
						
						
							| 55 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  ( 𝑢  gcd  𝑣 )  =  1 )  | 
						
						
							| 56 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  =  ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  =  ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  /  ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  gcd  ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) ) )  =  ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  /  ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  gcd  ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							eqid | 
							⊢ ( ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  /  ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  gcd  ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) ) )  =  ( ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  /  ( ( ( ( 𝑢  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) )  gcd  ( ( ( 𝑣  +  ( 𝑀  /  2 ) )  mod  𝑀 )  −  ( 𝑀  /  2 ) ) ) )  | 
						
						
							| 61 | 
							
								1 2 42 43 48 52 53 54 55 56 57 58 59 60
							 | 
							2sqlem8 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  ∧  𝑀  ≠  1 ) )  →  𝑀  ∈  𝑆 )  | 
						
						
							| 62 | 
							
								61
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  ∧  𝑀  ≠  1 )  →  𝑀  ∈  𝑆 )  | 
						
						
							| 63 | 
							
								41 62
							 | 
							pm2.61dane | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  ∧  ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) ) )  →  𝑀  ∈  𝑆 )  | 
						
						
							| 64 | 
							
								63
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  ℤ  ∧  𝑣  ∈  ℤ ) )  →  ( ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  →  𝑀  ∈  𝑆 ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							rexlimdvva | 
							⊢ ( 𝜑  →  ( ∃ 𝑢  ∈  ℤ ∃ 𝑣  ∈  ℤ ( ( 𝑢  gcd  𝑣 )  =  1  ∧  𝑁  =  ( ( 𝑢 ↑ 2 )  +  ( 𝑣 ↑ 2 ) ) )  →  𝑀  ∈  𝑆 ) )  | 
						
						
							| 66 | 
							
								26 65
							 | 
							mpd | 
							⊢ ( 𝜑  →  𝑀  ∈  𝑆 )  |