Step |
Hyp |
Ref |
Expression |
1 |
|
2sq.1 |
⊢ 𝑆 = ran ( 𝑤 ∈ ℤ[i] ↦ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
2 |
|
2sqlem7.2 |
⊢ 𝑌 = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) } |
3 |
|
2sqlem9.5 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
4 |
|
2sqlem9.7 |
⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) |
5 |
|
2sqlem9.6 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
6 |
|
2sqlem9.4 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑌 ) |
7 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑁 → ( 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑧 = 𝑁 → ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
9 |
8
|
2rexbidv |
⊢ ( 𝑧 = 𝑁 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 gcd 𝑦 ) = ( 𝑢 gcd 𝑦 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 gcd 𝑦 ) = 1 ↔ ( 𝑢 gcd 𝑦 ) = 1 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ↑ 2 ) = ( 𝑢 ↑ 2 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑥 = 𝑢 → ( 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
15 |
11 14
|
anbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝑢 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
16 |
|
oveq2 |
⊢ ( 𝑦 = 𝑣 → ( 𝑢 gcd 𝑦 ) = ( 𝑢 gcd 𝑣 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 gcd 𝑦 ) = 1 ↔ ( 𝑢 gcd 𝑣 ) = 1 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ↑ 2 ) = ( 𝑣 ↑ 2 ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑦 = 𝑣 → ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑦 = 𝑣 → ( 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) |
21 |
17 20
|
anbi12d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑢 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ) |
22 |
15 21
|
cbvrex2vw |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑁 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) |
23 |
9 22
|
bitrdi |
⊢ ( 𝑧 = 𝑁 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ) |
24 |
23 2
|
elab2g |
⊢ ( 𝑁 ∈ 𝑌 → ( 𝑁 ∈ 𝑌 ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ) |
25 |
24
|
ibi |
⊢ ( 𝑁 ∈ 𝑌 → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) |
26 |
6 25
|
syl |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) |
27 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ∧ 𝑀 = 1 ) → 𝑀 = 1 ) |
28 |
|
1z |
⊢ 1 ∈ ℤ |
29 |
|
zgz |
⊢ ( 1 ∈ ℤ → 1 ∈ ℤ[i] ) |
30 |
28 29
|
ax-mp |
⊢ 1 ∈ ℤ[i] |
31 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
32 |
31
|
eqcomi |
⊢ 1 = ( 1 ↑ 2 ) |
33 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = ( abs ‘ 1 ) ) |
34 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
35 |
33 34
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = 1 ) |
36 |
35
|
oveq1d |
⊢ ( 𝑥 = 1 → ( ( abs ‘ 𝑥 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( 1 ∈ ℤ[i] ∧ 1 = ( 1 ↑ 2 ) ) → ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) ) |
38 |
30 32 37
|
mp2an |
⊢ ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) |
39 |
1
|
2sqlem1 |
⊢ ( 1 ∈ 𝑆 ↔ ∃ 𝑥 ∈ ℤ[i] 1 = ( ( abs ‘ 𝑥 ) ↑ 2 ) ) |
40 |
38 39
|
mpbir |
⊢ 1 ∈ 𝑆 |
41 |
27 40
|
eqeltrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ∧ 𝑀 = 1 ) → 𝑀 ∈ 𝑆 ) |
42 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → ∀ 𝑏 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
43 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑀 ∥ 𝑁 ) |
44 |
1 2
|
2sqlem7 |
⊢ 𝑌 ⊆ ( 𝑆 ∩ ℕ ) |
45 |
|
inss2 |
⊢ ( 𝑆 ∩ ℕ ) ⊆ ℕ |
46 |
44 45
|
sstri |
⊢ 𝑌 ⊆ ℕ |
47 |
46 6
|
sselid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑁 ∈ ℕ ) |
49 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑀 ∈ ℕ ) |
50 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑀 ≠ 1 ) |
51 |
|
eluz2b3 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) ) |
52 |
49 50 51
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
53 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑢 ∈ ℤ ) |
54 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑣 ∈ ℤ ) |
55 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → ( 𝑢 gcd 𝑣 ) = 1 ) |
56 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) |
57 |
|
eqid |
⊢ ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
58 |
|
eqid |
⊢ ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) = ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
59 |
|
eqid |
⊢ ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) / ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) gcd ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) ) = ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) / ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) gcd ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) ) |
60 |
|
eqid |
⊢ ( ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) / ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) gcd ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) ) = ( ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) / ( ( ( ( 𝑢 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) gcd ( ( ( 𝑣 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) ) ) |
61 |
1 2 42 43 48 52 53 54 55 56 57 58 59 60
|
2sqlem8 |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ∧ 𝑀 ≠ 1 ) ) → 𝑀 ∈ 𝑆 ) |
62 |
61
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) ∧ 𝑀 ≠ 1 ) → 𝑀 ∈ 𝑆 ) |
63 |
41 62
|
pm2.61dane |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) ∧ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) ) → 𝑀 ∈ 𝑆 ) |
64 |
63
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ℤ ∧ 𝑣 ∈ ℤ ) ) → ( ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) → 𝑀 ∈ 𝑆 ) ) |
65 |
64
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℤ ( ( 𝑢 gcd 𝑣 ) = 1 ∧ 𝑁 = ( ( 𝑢 ↑ 2 ) + ( 𝑣 ↑ 2 ) ) ) → 𝑀 ∈ 𝑆 ) ) |
66 |
26 65
|
mpd |
⊢ ( 𝜑 → 𝑀 ∈ 𝑆 ) |