| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqcoprm.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | 2sqcoprm.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 3 |  | 2sqcoprm.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 4 |  | 2sqcoprm.4 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  𝑃 ) | 
						
							| 5 | 4 1 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℙ ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℙ ) | 
						
							| 7 |  | sq0i | ⊢ ( 𝐴  =  0  →  ( 𝐴 ↑ 2 )  =  0 ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 0  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 9 | 3 | zcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 | sqcld | ⊢ ( 𝜑  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 11 | 10 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 12 | 8 11 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐵 ↑ 2 ) ) | 
						
							| 13 |  | sqnprm | ⊢ ( 𝐵  ∈  ℤ  →  ¬  ( 𝐵 ↑ 2 )  ∈  ℙ ) | 
						
							| 14 | 3 13 | syl | ⊢ ( 𝜑  →  ¬  ( 𝐵 ↑ 2 )  ∈  ℙ ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ¬  ( 𝐵 ↑ 2 )  ∈  ℙ ) | 
						
							| 16 | 12 15 | eqneltrd | ⊢ ( ( 𝜑  ∧  𝐴  =  0 )  →  ¬  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℙ ) | 
						
							| 17 | 6 16 | pm2.65da | ⊢ ( 𝜑  →  ¬  𝐴  =  0 ) | 
						
							| 18 | 17 | neqned | ⊢ ( 𝜑  →  𝐴  ≠  0 ) |