Step |
Hyp |
Ref |
Expression |
1 |
|
2sqnn0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
2 |
|
elnn0 |
⊢ ( 𝑎 ∈ ℕ0 ↔ ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) ) |
3 |
|
elnn0 |
⊢ ( 𝑏 ∈ ℕ0 ↔ ( 𝑏 ∈ ℕ ∨ 𝑏 = 0 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑏 → ( 𝑦 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑦 = 𝑏 → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) ) |
10 |
6 9
|
rspc2ev |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ∧ 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
11 |
10
|
3expia |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
12 |
11
|
a1d |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑏 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
13 |
12
|
expcom |
⊢ ( 𝑏 ∈ ℕ → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
14 |
|
sq0i |
⊢ ( 𝑎 = 0 → ( 𝑎 ↑ 2 ) = 0 ) |
15 |
14
|
adantr |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑎 ↑ 2 ) = 0 ) |
16 |
15
|
oveq1d |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 0 + ( 𝑏 ↑ 2 ) ) ) |
17 |
|
nncn |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℂ ) |
18 |
17
|
sqcld |
⊢ ( 𝑏 ∈ ℕ → ( 𝑏 ↑ 2 ) ∈ ℂ ) |
19 |
18
|
addid2d |
⊢ ( 𝑏 ∈ ℕ → ( 0 + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 0 + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
21 |
16 20
|
eqtrd |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑏 ↑ 2 ) ) |
22 |
21
|
eqeq2d |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( 𝑏 ↑ 2 ) ) ) |
23 |
|
eleq1 |
⊢ ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ ↔ ( 𝑏 ↑ 2 ) ∈ ℙ ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 𝑏 ↑ 2 ) ∈ ℙ ) ) |
25 |
|
nnz |
⊢ ( 𝑏 ∈ ℕ → 𝑏 ∈ ℤ ) |
26 |
|
sqnprm |
⊢ ( 𝑏 ∈ ℤ → ¬ ( 𝑏 ↑ 2 ) ∈ ℙ ) |
27 |
25 26
|
syl |
⊢ ( 𝑏 ∈ ℕ → ¬ ( 𝑏 ↑ 2 ) ∈ ℙ ) |
28 |
27
|
pm2.21d |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑏 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( ( 𝑏 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
30 |
24 29
|
sylbid |
⊢ ( ( 𝑏 ∈ ℕ ∧ 𝑃 = ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
31 |
30
|
ex |
⊢ ( 𝑏 ∈ ℕ → ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( 𝑏 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
33 |
22 32
|
sylbid |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
34 |
33
|
com23 |
⊢ ( ( 𝑎 = 0 ∧ 𝑏 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
35 |
34
|
expcom |
⊢ ( 𝑏 ∈ ℕ → ( 𝑎 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
36 |
13 35
|
jaod |
⊢ ( 𝑏 ∈ ℕ → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
37 |
|
sq0i |
⊢ ( 𝑏 = 0 → ( 𝑏 ↑ 2 ) = 0 ) |
38 |
37
|
adantr |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑏 ↑ 2 ) = 0 ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑎 ↑ 2 ) + 0 ) ) |
40 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
41 |
40
|
sqcld |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 ↑ 2 ) ∈ ℂ ) |
42 |
41
|
addid1d |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) + 0 ) = ( 𝑎 ↑ 2 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + 0 ) = ( 𝑎 ↑ 2 ) ) |
44 |
39 43
|
eqtrd |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 𝑎 ↑ 2 ) ) |
45 |
44
|
eqeq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = ( 𝑎 ↑ 2 ) ) ) |
46 |
|
eleq1 |
⊢ ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ ↔ ( 𝑎 ↑ 2 ) ∈ ℙ ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ ↔ ( 𝑎 ↑ 2 ) ∈ ℙ ) ) |
48 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
49 |
|
sqnprm |
⊢ ( 𝑎 ∈ ℤ → ¬ ( 𝑎 ↑ 2 ) ∈ ℙ ) |
50 |
48 49
|
syl |
⊢ ( 𝑎 ∈ ℕ → ¬ ( 𝑎 ↑ 2 ) ∈ ℙ ) |
51 |
50
|
pm2.21d |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( ( 𝑎 ↑ 2 ) ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
53 |
47 52
|
sylbid |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑃 = ( 𝑎 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
54 |
53
|
ex |
⊢ ( 𝑎 ∈ ℕ → ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( 𝑎 ↑ 2 ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
56 |
45 55
|
sylbid |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
57 |
56
|
com23 |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 ∈ ℕ ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
58 |
57
|
ex |
⊢ ( 𝑏 = 0 → ( 𝑎 ∈ ℕ → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
59 |
14 37
|
oveqan12rd |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( 0 + 0 ) ) |
60 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
61 |
59 60
|
eqtrdi |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 0 ) |
62 |
61
|
eqeq2d |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ↔ 𝑃 = 0 ) ) |
63 |
|
eleq1 |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ ↔ 0 ∈ ℙ ) ) |
64 |
|
0nprm |
⊢ ¬ 0 ∈ ℙ |
65 |
64
|
pm2.21i |
⊢ ( 0 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
66 |
63 65
|
syl6bi |
⊢ ( 𝑃 = 0 → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
67 |
62 66
|
syl6bi |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ( 𝑃 ∈ ℙ → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
68 |
67
|
com23 |
⊢ ( ( 𝑏 = 0 ∧ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
69 |
68
|
ex |
⊢ ( 𝑏 = 0 → ( 𝑎 = 0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
70 |
58 69
|
jaod |
⊢ ( 𝑏 = 0 → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
71 |
36 70
|
jaoi |
⊢ ( ( 𝑏 ∈ ℕ ∨ 𝑏 = 0 ) → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
72 |
3 71
|
sylbi |
⊢ ( 𝑏 ∈ ℕ0 → ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
73 |
72
|
com12 |
⊢ ( ( 𝑎 ∈ ℕ ∨ 𝑎 = 0 ) → ( 𝑏 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
74 |
2 73
|
sylbi |
⊢ ( 𝑎 ∈ ℕ0 → ( 𝑏 ∈ ℕ0 → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) ) |
75 |
74
|
imp |
⊢ ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 ∈ ℙ → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
76 |
75
|
com12 |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
77 |
76
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ( 𝑎 ∈ ℕ0 ∧ 𝑏 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
78 |
77
|
rexlimdvv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃ 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 𝑃 = ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
79 |
1 78
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℕ ∃ 𝑦 ∈ ℕ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |