| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqnn0 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 2 |  | elnn0 | ⊢ ( 𝑎  ∈  ℕ0  ↔  ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 ) ) | 
						
							| 3 |  | elnn0 | ⊢ ( 𝑏  ∈  ℕ0  ↔  ( 𝑏  ∈  ℕ  ∨  𝑏  =  0 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑥  =  𝑎  →  ( 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑦 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( 𝑦  =  𝑏  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 10 | 6 9 | rspc2ev | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ  ∧  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 11 | 10 | 3expia | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 12 | 11 | a1d | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 13 | 12 | expcom | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝑎  ∈  ℕ  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 14 |  | sq0i | ⊢ ( 𝑎  =  0  →  ( 𝑎 ↑ 2 )  =  0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 𝑎 ↑ 2 )  =  0 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 0  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 17 |  | nncn | ⊢ ( 𝑏  ∈  ℕ  →  𝑏  ∈  ℂ ) | 
						
							| 18 | 17 | sqcld | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝑏 ↑ 2 )  ∈  ℂ ) | 
						
							| 19 | 18 | addlidd | ⊢ ( 𝑏  ∈  ℕ  →  ( 0  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 0  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 21 | 16 20 | eqtrd | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  𝑃  =  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 23 |  | eleq1 | ⊢ ( 𝑃  =  ( 𝑏 ↑ 2 )  →  ( 𝑃  ∈  ℙ  ↔  ( 𝑏 ↑ 2 )  ∈  ℙ ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑏  ∈  ℕ  ∧  𝑃  =  ( 𝑏 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  ↔  ( 𝑏 ↑ 2 )  ∈  ℙ ) ) | 
						
							| 25 |  | nnz | ⊢ ( 𝑏  ∈  ℕ  →  𝑏  ∈  ℤ ) | 
						
							| 26 |  | sqnprm | ⊢ ( 𝑏  ∈  ℤ  →  ¬  ( 𝑏 ↑ 2 )  ∈  ℙ ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑏  ∈  ℕ  →  ¬  ( 𝑏 ↑ 2 )  ∈  ℙ ) | 
						
							| 28 | 27 | pm2.21d | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑏 ↑ 2 )  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑏  ∈  ℕ  ∧  𝑃  =  ( 𝑏 ↑ 2 ) )  →  ( ( 𝑏 ↑ 2 )  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 30 | 24 29 | sylbid | ⊢ ( ( 𝑏  ∈  ℕ  ∧  𝑃  =  ( 𝑏 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝑃  =  ( 𝑏 ↑ 2 )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  =  ( 𝑏 ↑ 2 )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 33 | 22 32 | sylbid | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 34 | 33 | com23 | ⊢ ( ( 𝑎  =  0  ∧  𝑏  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 35 | 34 | expcom | ⊢ ( 𝑏  ∈  ℕ  →  ( 𝑎  =  0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 36 | 13 35 | jaod | ⊢ ( 𝑏  ∈  ℕ  →  ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 37 |  | sq0i | ⊢ ( 𝑏  =  0  →  ( 𝑏 ↑ 2 )  =  0 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( 𝑏 ↑ 2 )  =  0 ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  0 ) ) | 
						
							| 40 |  | nncn | ⊢ ( 𝑎  ∈  ℕ  →  𝑎  ∈  ℂ ) | 
						
							| 41 | 40 | sqcld | ⊢ ( 𝑎  ∈  ℕ  →  ( 𝑎 ↑ 2 )  ∈  ℂ ) | 
						
							| 42 | 41 | addridd | ⊢ ( 𝑎  ∈  ℕ  →  ( ( 𝑎 ↑ 2 )  +  0 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( ( 𝑎 ↑ 2 )  +  0 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 44 | 39 43 | eqtrd | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  𝑃  =  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 46 |  | eleq1 | ⊢ ( 𝑃  =  ( 𝑎 ↑ 2 )  →  ( 𝑃  ∈  ℙ  ↔  ( 𝑎 ↑ 2 )  ∈  ℙ ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑃  =  ( 𝑎 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  ↔  ( 𝑎 ↑ 2 )  ∈  ℙ ) ) | 
						
							| 48 |  | nnz | ⊢ ( 𝑎  ∈  ℕ  →  𝑎  ∈  ℤ ) | 
						
							| 49 |  | sqnprm | ⊢ ( 𝑎  ∈  ℤ  →  ¬  ( 𝑎 ↑ 2 )  ∈  ℙ ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑎  ∈  ℕ  →  ¬  ( 𝑎 ↑ 2 )  ∈  ℙ ) | 
						
							| 51 | 50 | pm2.21d | ⊢ ( 𝑎  ∈  ℕ  →  ( ( 𝑎 ↑ 2 )  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑃  =  ( 𝑎 ↑ 2 ) )  →  ( ( 𝑎 ↑ 2 )  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 53 | 47 52 | sylbid | ⊢ ( ( 𝑎  ∈  ℕ  ∧  𝑃  =  ( 𝑎 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝑎  ∈  ℕ  →  ( 𝑃  =  ( 𝑎 ↑ 2 )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( 𝑃  =  ( 𝑎 ↑ 2 )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 56 | 45 55 | sylbid | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 57 | 56 | com23 | ⊢ ( ( 𝑏  =  0  ∧  𝑎  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝑏  =  0  →  ( 𝑎  ∈  ℕ  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 59 | 14 37 | oveqan12rd | ⊢ ( ( 𝑏  =  0  ∧  𝑎  =  0 )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 0  +  0 ) ) | 
						
							| 60 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 61 | 59 60 | eqtrdi | ⊢ ( ( 𝑏  =  0  ∧  𝑎  =  0 )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  0 ) | 
						
							| 62 | 61 | eqeq2d | ⊢ ( ( 𝑏  =  0  ∧  𝑎  =  0 )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  𝑃  =  0 ) ) | 
						
							| 63 |  | eleq1 | ⊢ ( 𝑃  =  0  →  ( 𝑃  ∈  ℙ  ↔  0  ∈  ℙ ) ) | 
						
							| 64 |  | 0nprm | ⊢ ¬  0  ∈  ℙ | 
						
							| 65 | 64 | pm2.21i | ⊢ ( 0  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 66 | 63 65 | biimtrdi | ⊢ ( 𝑃  =  0  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 67 | 62 66 | biimtrdi | ⊢ ( ( 𝑏  =  0  ∧  𝑎  =  0 )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ( 𝑃  ∈  ℙ  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 68 | 67 | com23 | ⊢ ( ( 𝑏  =  0  ∧  𝑎  =  0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 69 | 68 | ex | ⊢ ( 𝑏  =  0  →  ( 𝑎  =  0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 70 | 58 69 | jaod | ⊢ ( 𝑏  =  0  →  ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 71 | 36 70 | jaoi | ⊢ ( ( 𝑏  ∈  ℕ  ∨  𝑏  =  0 )  →  ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 72 | 3 71 | sylbi | ⊢ ( 𝑏  ∈  ℕ0  →  ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 73 | 72 | com12 | ⊢ ( ( 𝑎  ∈  ℕ  ∨  𝑎  =  0 )  →  ( 𝑏  ∈  ℕ0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 74 | 2 73 | sylbi | ⊢ ( 𝑎  ∈  ℕ0  →  ( 𝑏  ∈  ℕ0  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) ) | 
						
							| 75 | 74 | imp | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑃  ∈  ℙ  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 76 | 75 | com12 | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) ) | 
						
							| 78 | 77 | rexlimdvv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 79 | 1 78 | mpd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℕ 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) |