| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sq | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 2 |  | elnn0z | ⊢ ( 𝑎  ∈  ℕ0  ↔  ( 𝑎  ∈  ℤ  ∧  0  ≤  𝑎 ) ) | 
						
							| 3 | 2 | biimpri | ⊢ ( ( 𝑎  ∈  ℤ  ∧  0  ≤  𝑎 )  →  𝑎  ∈  ℕ0 ) | 
						
							| 4 |  | elznn0 | ⊢ ( 𝑎  ∈  ℤ  ↔  ( 𝑎  ∈  ℝ  ∧  ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 ) ) ) | 
						
							| 5 |  | nn0ge0 | ⊢ ( 𝑎  ∈  ℕ0  →  0  ≤  𝑎 ) | 
						
							| 6 | 5 | pm2.24d | ⊢ ( 𝑎  ∈  ℕ0  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝑎  ∈  ℕ0  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) ) | 
						
							| 8 |  | ax-1 | ⊢ ( - 𝑎  ∈  ℕ0  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑎  ∈  ℝ  →  ( - 𝑎  ∈  ℕ0  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) ) | 
						
							| 10 | 7 9 | jaod | ⊢ ( 𝑎  ∈  ℝ  →  ( ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 )  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝑎  ∈  ℝ  ∧  ( 𝑎  ∈  ℕ0  ∨  - 𝑎  ∈  ℕ0 ) )  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 12 | 4 11 | sylbi | ⊢ ( 𝑎  ∈  ℤ  →  ( ¬  0  ≤  𝑎  →  - 𝑎  ∈  ℕ0 ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( 𝑎  ∈  ℤ  ∧  ¬  0  ≤  𝑎 )  →  - 𝑎  ∈  ℕ0 ) | 
						
							| 14 | 3 13 | ifclda | ⊢ ( 𝑎  ∈  ℤ  →  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  ∈  ℕ0 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) )  →  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  ∈  ℕ0 ) | 
						
							| 17 |  | elnn0z | ⊢ ( 𝑏  ∈  ℕ0  ↔  ( 𝑏  ∈  ℤ  ∧  0  ≤  𝑏 ) ) | 
						
							| 18 | 17 | biimpri | ⊢ ( ( 𝑏  ∈  ℤ  ∧  0  ≤  𝑏 )  →  𝑏  ∈  ℕ0 ) | 
						
							| 19 |  | elznn0 | ⊢ ( 𝑏  ∈  ℤ  ↔  ( 𝑏  ∈  ℝ  ∧  ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 20 |  | nn0ge0 | ⊢ ( 𝑏  ∈  ℕ0  →  0  ≤  𝑏 ) | 
						
							| 21 | 20 | pm2.24d | ⊢ ( 𝑏  ∈  ℕ0  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑏  ∈  ℝ  →  ( 𝑏  ∈  ℕ0  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 23 |  | ax-1 | ⊢ ( - 𝑏  ∈  ℕ0  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑏  ∈  ℝ  →  ( - 𝑏  ∈  ℕ0  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 25 | 22 24 | jaod | ⊢ ( 𝑏  ∈  ℝ  →  ( ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 )  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝑏  ∈  ℝ  ∧  ( 𝑏  ∈  ℕ0  ∨  - 𝑏  ∈  ℕ0 ) )  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) | 
						
							| 27 | 19 26 | sylbi | ⊢ ( 𝑏  ∈  ℤ  →  ( ¬  0  ≤  𝑏  →  - 𝑏  ∈  ℕ0 ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝑏  ∈  ℤ  ∧  ¬  0  ≤  𝑏 )  →  - 𝑏  ∈  ℕ0 ) | 
						
							| 29 | 18 28 | ifclda | ⊢ ( 𝑏  ∈  ℤ  →  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  ∈  ℕ0 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) )  →  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  ∈  ℕ0 ) | 
						
							| 32 |  | elznn0nn | ⊢ ( 𝑎  ∈  ℤ  ↔  ( 𝑎  ∈  ℕ0  ∨  ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ ) ) ) | 
						
							| 33 | 5 | iftrued | ⊢ ( 𝑎  ∈  ℕ0  →  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  =  𝑎 ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  =  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ) | 
						
							| 35 | 34 | oveq1d | ⊢ ( 𝑎  ∈  ℕ0  →  ( 𝑎 ↑ 2 )  =  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 ) ) | 
						
							| 36 |  | elnnz | ⊢ ( - 𝑎  ∈  ℕ  ↔  ( - 𝑎  ∈  ℤ  ∧  0  <  - 𝑎 ) ) | 
						
							| 37 |  | lt0neg1 | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝑎  <  0  ↔  0  <  - 𝑎 ) ) | 
						
							| 38 |  | id | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℝ ) | 
						
							| 39 |  | 0red | ⊢ ( 𝑎  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 40 | 38 39 | ltnled | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝑎  <  0  ↔  ¬  0  ≤  𝑎 ) ) | 
						
							| 41 | 40 | biimpd | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝑎  <  0  →  ¬  0  ≤  𝑎 ) ) | 
						
							| 42 | 37 41 | sylbird | ⊢ ( 𝑎  ∈  ℝ  →  ( 0  <  - 𝑎  →  ¬  0  ≤  𝑎 ) ) | 
						
							| 43 | 42 | com12 | ⊢ ( 0  <  - 𝑎  →  ( 𝑎  ∈  ℝ  →  ¬  0  ≤  𝑎 ) ) | 
						
							| 44 | 36 43 | simplbiim | ⊢ ( - 𝑎  ∈  ℕ  →  ( 𝑎  ∈  ℝ  →  ¬  0  ≤  𝑎 ) ) | 
						
							| 45 | 44 | impcom | ⊢ ( ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ )  →  ¬  0  ≤  𝑎 ) | 
						
							| 46 | 45 | iffalsed | ⊢ ( ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ )  →  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  =  - 𝑎 ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ )  →  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  =  ( - 𝑎 ↑ 2 ) ) | 
						
							| 48 |  | recn | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℂ ) | 
						
							| 49 |  | sqneg | ⊢ ( 𝑎  ∈  ℂ  →  ( - 𝑎 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝑎  ∈  ℝ  →  ( - 𝑎 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ )  →  ( - 𝑎 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 52 | 47 51 | eqtr2d | ⊢ ( ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ )  →  ( 𝑎 ↑ 2 )  =  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 ) ) | 
						
							| 53 | 35 52 | jaoi | ⊢ ( ( 𝑎  ∈  ℕ0  ∨  ( 𝑎  ∈  ℝ  ∧  - 𝑎  ∈  ℕ ) )  →  ( 𝑎 ↑ 2 )  =  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 ) ) | 
						
							| 54 | 32 53 | sylbi | ⊢ ( 𝑎  ∈  ℤ  →  ( 𝑎 ↑ 2 )  =  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 ) ) | 
						
							| 55 |  | elznn0nn | ⊢ ( 𝑏  ∈  ℤ  ↔  ( 𝑏  ∈  ℕ0  ∨  ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ ) ) ) | 
						
							| 56 | 20 | iftrued | ⊢ ( 𝑏  ∈  ℕ0  →  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  =  𝑏 ) | 
						
							| 57 | 56 | eqcomd | ⊢ ( 𝑏  ∈  ℕ0  →  𝑏  =  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝑏  ∈  ℕ0  →  ( 𝑏 ↑ 2 )  =  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) | 
						
							| 59 |  | elnnz | ⊢ ( - 𝑏  ∈  ℕ  ↔  ( - 𝑏  ∈  ℤ  ∧  0  <  - 𝑏 ) ) | 
						
							| 60 |  | lt0neg1 | ⊢ ( 𝑏  ∈  ℝ  →  ( 𝑏  <  0  ↔  0  <  - 𝑏 ) ) | 
						
							| 61 |  | id | ⊢ ( 𝑏  ∈  ℝ  →  𝑏  ∈  ℝ ) | 
						
							| 62 |  | 0red | ⊢ ( 𝑏  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 63 | 61 62 | ltnled | ⊢ ( 𝑏  ∈  ℝ  →  ( 𝑏  <  0  ↔  ¬  0  ≤  𝑏 ) ) | 
						
							| 64 | 63 | biimpd | ⊢ ( 𝑏  ∈  ℝ  →  ( 𝑏  <  0  →  ¬  0  ≤  𝑏 ) ) | 
						
							| 65 | 60 64 | sylbird | ⊢ ( 𝑏  ∈  ℝ  →  ( 0  <  - 𝑏  →  ¬  0  ≤  𝑏 ) ) | 
						
							| 66 | 65 | com12 | ⊢ ( 0  <  - 𝑏  →  ( 𝑏  ∈  ℝ  →  ¬  0  ≤  𝑏 ) ) | 
						
							| 67 | 59 66 | simplbiim | ⊢ ( - 𝑏  ∈  ℕ  →  ( 𝑏  ∈  ℝ  →  ¬  0  ≤  𝑏 ) ) | 
						
							| 68 | 67 | impcom | ⊢ ( ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ )  →  ¬  0  ≤  𝑏 ) | 
						
							| 69 | 68 | iffalsed | ⊢ ( ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ )  →  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  =  - 𝑏 ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ )  →  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 )  =  ( - 𝑏 ↑ 2 ) ) | 
						
							| 71 |  | recn | ⊢ ( 𝑏  ∈  ℝ  →  𝑏  ∈  ℂ ) | 
						
							| 72 |  | sqneg | ⊢ ( 𝑏  ∈  ℂ  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝑏  ∈  ℝ  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ )  →  ( - 𝑏 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 75 | 70 74 | eqtr2d | ⊢ ( ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ )  →  ( 𝑏 ↑ 2 )  =  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) | 
						
							| 76 | 58 75 | jaoi | ⊢ ( ( 𝑏  ∈  ℕ0  ∨  ( 𝑏  ∈  ℝ  ∧  - 𝑏  ∈  ℕ ) )  →  ( 𝑏 ↑ 2 )  =  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) | 
						
							| 77 | 55 76 | sylbi | ⊢ ( 𝑏  ∈  ℤ  →  ( 𝑏 ↑ 2 )  =  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) | 
						
							| 78 | 54 77 | oveqan12d | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) ) | 
						
							| 80 | 79 | biimpd | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) ) | 
						
							| 81 | 80 | imp | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) )  →  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) | 
						
							| 82 |  | oveq1 | ⊢ ( 𝑥  =  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  →  ( 𝑥 ↑ 2 )  =  ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( 𝑥  =  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  →  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 84 | 83 | eqeq2d | ⊢ ( 𝑥  =  if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  →  ( 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑦  =  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  →  ( 𝑦 ↑ 2 )  =  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝑦  =  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  →  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) | 
						
							| 87 | 86 | eqeq2d | ⊢ ( 𝑦  =  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  →  ( 𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( 𝑦 ↑ 2 ) )  ↔  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) ) ) | 
						
							| 88 | 84 87 | rspc2ev | ⊢ ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 )  ∈  ℕ0  ∧  if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 )  ∈  ℕ0  ∧  𝑃  =  ( ( if ( 0  ≤  𝑎 ,  𝑎 ,  - 𝑎 ) ↑ 2 )  +  ( if ( 0  ≤  𝑏 ,  𝑏 ,  - 𝑏 ) ↑ 2 ) ) )  →  ∃ 𝑥  ∈  ℕ0 ∃ 𝑦  ∈  ℕ0 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 89 | 16 31 81 88 | syl3anc | ⊢ ( ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  ∧  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) )  →  ∃ 𝑥  ∈  ℕ0 ∃ 𝑦  ∈  ℕ0 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 90 | 89 | ex | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ0 ∃ 𝑦  ∈  ℕ0 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) ) | 
						
							| 91 | 90 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑥  ∈  ℕ0 ∃ 𝑦  ∈  ℕ0 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) | 
						
							| 92 | 1 91 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃ 𝑥  ∈  ℕ0 ∃ 𝑦  ∈  ℕ0 𝑃  =  ( ( 𝑥 ↑ 2 )  +  ( 𝑦 ↑ 2 ) ) ) |