Step |
Hyp |
Ref |
Expression |
1 |
|
2sqnn0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 ∈ ℕ0 ) |
3 |
2
|
adantl |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → 𝑥 ∈ ℕ0 ) |
4 |
|
breq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ≤ 𝑏 ↔ 𝑥 ≤ 𝑏 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑎 = 𝑥 → ( 𝑎 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑎 = 𝑥 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
8 |
4 7
|
anbi12d |
⊢ ( 𝑎 = 𝑥 → ( ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
9 |
8
|
reubidv |
⊢ ( 𝑎 = 𝑥 → ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ∧ 𝑎 = 𝑥 ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℕ0 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑦 ∈ ℕ0 ) |
13 |
|
breq2 |
⊢ ( 𝑏 = 𝑦 → ( 𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑦 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
17 |
13 16
|
anbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
18 |
|
equequ1 |
⊢ ( 𝑏 = 𝑦 → ( 𝑏 = 𝑐 ↔ 𝑦 = 𝑐 ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑏 = 𝑦 → ( ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ↔ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) ) |
21 |
17 20
|
anbi12d |
⊢ ( 𝑏 = 𝑦 → ( ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑏 = 𝑦 ) → ( ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ↔ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) ) ) |
23 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → 𝑥 ≤ 𝑦 ) |
24 |
|
eqidd |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
25 |
|
nn0re |
⊢ ( 𝑐 ∈ ℕ0 → 𝑐 ∈ ℝ ) |
26 |
25
|
resqcld |
⊢ ( 𝑐 ∈ ℕ0 → ( 𝑐 ↑ 2 ) ∈ ℝ ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ↑ 2 ) ∈ ℝ ) |
28 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
29 |
28
|
resqcld |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
32 |
|
nn0re |
⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ ) |
33 |
32
|
resqcld |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
36 |
|
readdcan |
⊢ ( ( ( 𝑐 ↑ 2 ) ∈ ℝ ∧ ( 𝑦 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) ) |
37 |
27 31 35 36
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) ) |
38 |
28
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → 𝑦 ∈ ℝ ) |
39 |
25
|
ad2antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → 𝑐 ∈ ℝ ) |
40 |
|
nn0ge0 |
⊢ ( 𝑦 ∈ ℕ0 → 0 ≤ 𝑦 ) |
41 |
40
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → 0 ≤ 𝑦 ) |
42 |
|
nn0ge0 |
⊢ ( 𝑐 ∈ ℕ0 → 0 ≤ 𝑐 ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → 0 ≤ 𝑐 ) |
44 |
|
simpr |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
45 |
44
|
eqcomd |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → ( 𝑦 ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
46 |
38 39 41 43 45
|
sq11d |
⊢ ( ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) → 𝑦 = 𝑐 ) |
47 |
46
|
ex |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑐 ↑ 2 ) = ( 𝑦 ↑ 2 ) → 𝑦 = 𝑐 ) ) |
48 |
37 47
|
sylbid |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → 𝑦 = 𝑐 ) ) |
49 |
48
|
adantld |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) |
50 |
49
|
ralrimiva |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) |
51 |
23 24 50
|
jca31 |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 = 𝑐 ) ) ) |
52 |
12 22 51
|
rspcedvd |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → ∃ 𝑏 ∈ ℕ0 ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ) |
53 |
|
breq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑐 ) ) |
54 |
|
oveq1 |
⊢ ( 𝑏 = 𝑐 → ( 𝑏 ↑ 2 ) = ( 𝑐 ↑ 2 ) ) |
55 |
54
|
oveq2d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) ) |
56 |
55
|
eqeq1d |
⊢ ( 𝑏 = 𝑐 → ( ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
57 |
53 56
|
anbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
58 |
57
|
reu8 |
⊢ ( ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑥 ≤ 𝑐 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ) |
59 |
52 58
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ≤ 𝑦 ) → ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
60 |
59
|
ex |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ≤ 𝑦 → ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( 𝑥 ≤ 𝑦 → ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
62 |
61
|
impcom |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
63 |
|
eqeq2 |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
64 |
63
|
anbi2d |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
65 |
64
|
reubidv |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
66 |
65
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
68 |
62 67
|
mpbird |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃! 𝑏 ∈ ℕ0 ( 𝑥 ≤ 𝑏 ∧ ( ( 𝑥 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
69 |
3 10 68
|
rspcedvd |
⊢ ( ( 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
70 |
11
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑦 ∈ ℕ0 ) |
71 |
70
|
adantl |
⊢ ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → 𝑦 ∈ ℕ0 ) |
72 |
|
breq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ≤ 𝑏 ↔ 𝑦 ≤ 𝑏 ) ) |
73 |
|
oveq1 |
⊢ ( 𝑎 = 𝑦 → ( 𝑎 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
74 |
73
|
oveq1d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
75 |
74
|
eqeq1d |
⊢ ( 𝑎 = 𝑦 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
76 |
72 75
|
anbi12d |
⊢ ( 𝑎 = 𝑦 → ( ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
77 |
76
|
reubidv |
⊢ ( 𝑎 = 𝑦 → ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
78 |
77
|
adantl |
⊢ ( ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ∧ 𝑎 = 𝑦 ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
79 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → 𝑥 ∈ ℕ0 ) |
80 |
|
breq2 |
⊢ ( 𝑏 = 𝑥 → ( 𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑥 ) ) |
81 |
|
oveq1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑏 = 𝑥 → ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) ) |
83 |
82
|
eqeq1d |
⊢ ( 𝑏 = 𝑥 → ( ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
84 |
80 83
|
anbi12d |
⊢ ( 𝑏 = 𝑥 → ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( 𝑦 ≤ 𝑥 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
85 |
|
equequ1 |
⊢ ( 𝑏 = 𝑥 → ( 𝑏 = 𝑐 ↔ 𝑥 = 𝑐 ) ) |
86 |
85
|
imbi2d |
⊢ ( 𝑏 = 𝑥 → ( ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ↔ ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑏 = 𝑥 → ( ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ↔ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) ) |
88 |
84 87
|
anbi12d |
⊢ ( 𝑏 = 𝑥 → ( ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ↔ ( ( 𝑦 ≤ 𝑥 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) ) ) |
89 |
88
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) ∧ 𝑏 = 𝑥 ) → ( ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ↔ ( ( 𝑦 ≤ 𝑥 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) ) ) |
90 |
|
ltnle |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
91 |
28 32 90
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
92 |
28
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑦 < 𝑥 ) → 𝑦 ∈ ℝ ) |
93 |
32
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑦 < 𝑥 ) → 𝑥 ∈ ℝ ) |
94 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑦 < 𝑥 ) → 𝑦 < 𝑥 ) |
95 |
92 93 94
|
ltled |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑦 < 𝑥 ) → 𝑦 ≤ 𝑥 ) |
96 |
95
|
ex |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 < 𝑥 → 𝑦 ≤ 𝑥 ) ) |
97 |
91 96
|
sylbird |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ¬ 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥 ) ) |
98 |
97
|
imp |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → 𝑦 ≤ 𝑥 ) |
99 |
29
|
recnd |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
100 |
99
|
adantl |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
101 |
33
|
recnd |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
102 |
101
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
103 |
100 102
|
addcomd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
105 |
34
|
recnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
106 |
105
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
107 |
30
|
recnd |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
108 |
107
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
109 |
106 108
|
addcomd |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) ) |
110 |
109
|
eqeq2d |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) ) ) |
111 |
26
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑐 ↑ 2 ) ∈ ℝ ) |
112 |
33
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
113 |
29
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( 𝑦 ↑ 2 ) ∈ ℝ ) |
114 |
|
readdcan |
⊢ ( ( ( 𝑐 ↑ 2 ) ∈ ℝ ∧ ( 𝑥 ↑ 2 ) ∈ ℝ ∧ ( 𝑦 ↑ 2 ) ∈ ℝ ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) ↔ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) ) |
115 |
111 112 113 114
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) ↔ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) ) |
116 |
110 115
|
bitrd |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) ) |
117 |
25
|
ad2antlr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 𝑐 ∈ ℝ ) |
118 |
32
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 𝑥 ∈ ℝ ) |
119 |
118
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 𝑥 ∈ ℝ ) |
120 |
42
|
ad2antlr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 0 ≤ 𝑐 ) |
121 |
|
nn0ge0 |
⊢ ( 𝑥 ∈ ℕ0 → 0 ≤ 𝑥 ) |
122 |
121
|
adantr |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → 0 ≤ 𝑥 ) |
123 |
122
|
ad2antrr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 0 ≤ 𝑥 ) |
124 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) |
125 |
117 119 120 123 124
|
sq11d |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 𝑐 = 𝑥 ) |
126 |
125
|
eqcomd |
⊢ ( ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) ∧ ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) ) → 𝑥 = 𝑐 ) |
127 |
126
|
ex |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑐 ↑ 2 ) = ( 𝑥 ↑ 2 ) → 𝑥 = 𝑐 ) ) |
128 |
116 127
|
sylbid |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → 𝑥 = 𝑐 ) ) |
129 |
128
|
adantld |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑐 ∈ ℕ0 ) → ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) |
130 |
129
|
ralrimiva |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) |
131 |
130
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) |
132 |
98 104 131
|
jca31 |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → ( ( 𝑦 ≤ 𝑥 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑥 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑥 = 𝑐 ) ) ) |
133 |
79 89 132
|
rspcedvd |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → ∃ 𝑏 ∈ ℕ0 ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ) |
134 |
|
breq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑐 ) ) |
135 |
54
|
oveq2d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) ) |
136 |
135
|
eqeq1d |
⊢ ( 𝑏 = 𝑐 → ( ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
137 |
134 136
|
anbi12d |
⊢ ( 𝑏 = 𝑐 → ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
138 |
137
|
reu8 |
⊢ ( ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑏 ∈ ℕ0 ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ∧ ∀ 𝑐 ∈ ℕ0 ( ( 𝑦 ≤ 𝑐 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑐 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → 𝑏 = 𝑐 ) ) ) |
139 |
133 138
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ ¬ 𝑥 ≤ 𝑦 ) → ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
140 |
139
|
ex |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ¬ 𝑥 ≤ 𝑦 → ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
141 |
140
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( ¬ 𝑥 ≤ 𝑦 → ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
142 |
141
|
impcom |
⊢ ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
143 |
|
eqeq2 |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
144 |
143
|
anbi2d |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
145 |
144
|
reubidv |
⊢ ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
146 |
145
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
147 |
146
|
adantl |
⊢ ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
148 |
142 147
|
mpbird |
⊢ ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃! 𝑏 ∈ ℕ0 ( 𝑦 ≤ 𝑏 ∧ ( ( 𝑦 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
149 |
71 78 148
|
rspcedvd |
⊢ ( ( ¬ 𝑥 ≤ 𝑦 ∧ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
150 |
69 149
|
pm2.61ian |
⊢ ( ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
151 |
150
|
ex |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
152 |
151
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
153 |
152
|
rexlimdvva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃ 𝑥 ∈ ℕ0 ∃ 𝑦 ∈ ℕ0 𝑃 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
154 |
1 153
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
155 |
|
reurex |
⊢ ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
156 |
155
|
a1i |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) ∧ 𝑎 ∈ ℕ0 ) → ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
157 |
156
|
ralrimiva |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∀ 𝑎 ∈ ℕ0 ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
158 |
|
2sqmo |
⊢ ( 𝑃 ∈ ℙ → ∃* 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
159 |
158
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃* 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
160 |
|
rmoim |
⊢ ( ∀ 𝑎 ∈ ℕ0 ( ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) → ( ∃* 𝑎 ∈ ℕ0 ∃ 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) → ∃* 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
161 |
157 159 160
|
sylc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃* 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
162 |
|
reu5 |
⊢ ( ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( ∃ 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ∧ ∃* 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
163 |
154 161 162
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ0 ∃! 𝑏 ∈ ℕ0 ( 𝑎 ≤ 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |