| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
⊢ ( 𝑃 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 2 |
1
|
eqcoms |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
| 4 |
|
eqcom |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ↔ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) ) |
| 5 |
|
2sqreulem2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) → 𝐵 = 𝐶 ) ) |
| 6 |
4 5
|
biimtrid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) → 𝐵 = 𝐶 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) → 𝐵 = 𝐶 ) ) |
| 8 |
3 7
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 → 𝐵 = 𝐶 ) ) |
| 9 |
8
|
adantld |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) → ( ( 𝜓 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) → 𝐵 = 𝐶 ) ) |
| 10 |
9
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 → ( ( 𝜓 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) → 𝐵 = 𝐶 ) ) ) |
| 11 |
10
|
adantld |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝜑 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) → ( ( 𝜓 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) → 𝐵 = 𝐶 ) ) ) |
| 12 |
11
|
impd |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝜑 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) ∧ ( 𝜓 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) ) → 𝐵 = 𝐶 ) ) |
| 13 |
12
|
3expb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ) → ( ( ( 𝜑 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = 𝑃 ) ∧ ( 𝜓 ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) = 𝑃 ) ) → 𝐵 = 𝐶 ) ) |