| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreulem4.1 | ⊢ ( 𝜑  ↔  ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 2 |  | 2sqreulem3 | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  ( 𝑏  ∈  ℕ0  ∧  𝑐  ∈  ℕ0 ) )  →  ( ( ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ∧  ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) )  →  𝑏  =  𝑐 ) ) | 
						
							| 3 | 2 | ralrimivva | ⊢ ( 𝑎  ∈  ℕ0  →  ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ( ( ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ∧  ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) )  →  𝑏  =  𝑐 ) ) | 
						
							| 4 | 1 | rmobii | ⊢ ( ∃* 𝑏  ∈  ℕ0 𝜑  ↔  ∃* 𝑏  ∈  ℕ0 ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑏 ℕ0 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑐 ℕ0 | 
						
							| 7 |  | nfsbc1v | ⊢ Ⅎ 𝑏 [ 𝑐  /  𝑏 ] 𝜓 | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑏 ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 | 
						
							| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑏 ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) | 
						
							| 10 |  | sbceq1a | ⊢ ( 𝑏  =  𝑐  →  ( 𝜓  ↔  [ 𝑐  /  𝑏 ] 𝜓 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑏  =  𝑐  →  ( 𝑏 ↑ 2 )  =  ( 𝑐 ↑ 2 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑏  =  𝑐  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑏  =  𝑐  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  ↔  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 14 | 10 13 | anbi12d | ⊢ ( 𝑏  =  𝑐  →  ( ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) ) ) | 
						
							| 15 | 5 6 9 14 | rmo4f | ⊢ ( ∃* 𝑏  ∈  ℕ0 ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ( ( ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ∧  ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) )  →  𝑏  =  𝑐 ) ) | 
						
							| 16 | 4 15 | bitri | ⊢ ( ∃* 𝑏  ∈  ℕ0 𝜑  ↔  ∀ 𝑏  ∈  ℕ0 ∀ 𝑐  ∈  ℕ0 ( ( ( 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ∧  ( [ 𝑐  /  𝑏 ] 𝜓  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑐 ↑ 2 ) )  =  𝑃 ) )  →  𝑏  =  𝑐 ) ) | 
						
							| 17 | 3 16 | sylibr | ⊢ ( 𝑎  ∈  ℕ0  →  ∃* 𝑏  ∈  ℕ0 𝜑 ) | 
						
							| 18 | 17 | rgen | ⊢ ∀ 𝑎  ∈  ℕ0 ∃* 𝑏  ∈  ℕ0 𝜑 |