| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sqreultlem | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑃  mod  4 )  =  1 )  →  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 2 | 1 | ex | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  mod  4 )  =  1  →  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) ) | 
						
							| 3 |  | 2reu2rex | ⊢ ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) | 
						
							| 4 |  | elsni | ⊢ ( 𝑃  ∈  { 2 }  →  𝑃  =  2 ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑃  =  2  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  ↔  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2 ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑃  =  2  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2 ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  ∧  𝑃  =  2 )  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  ↔  ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2 ) ) ) | 
						
							| 8 |  | 2sq2 | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2  ↔  ( 𝑎  =  1  ∧  𝑏  =  1 ) ) ) | 
						
							| 9 |  | breq12 | ⊢ ( ( 𝑎  =  1  ∧  𝑏  =  1 )  →  ( 𝑎  <  𝑏  ↔  1  <  1 ) ) | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 | 10 | ltnri | ⊢ ¬  1  <  1 | 
						
							| 12 | 11 | pm2.21i | ⊢ ( 1  <  1  →  ( 𝑃  mod  4 )  =  1 ) | 
						
							| 13 | 9 12 | biimtrdi | ⊢ ( ( 𝑎  =  1  ∧  𝑏  =  1 )  →  ( 𝑎  <  𝑏  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 14 | 8 13 | biimtrdi | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2  →  ( 𝑎  <  𝑏  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 15 | 14 | impcomd | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  ∧  𝑃  =  2 )  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  2 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 17 | 7 16 | sylbid | ⊢ ( ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  ∧  𝑃  =  2 )  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( 𝑃  =  2  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( ( 𝑎  ∈  ℕ0  ∧  𝑏  ∈  ℕ0 )  →  ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  =  2  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 20 | 19 | rexlimivv | ⊢ ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  =  2  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 21 | 3 4 20 | syl2imc | ⊢ ( 𝑃  ∈  { 2 }  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 22 | 21 | a1d | ⊢ ( 𝑃  ∈  { 2 }  →  ( 𝑃  ∈  ℙ  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 23 |  | eldif | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  ∈  { 2 } ) ) | 
						
							| 24 |  | eldifsnneq | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  𝑃  =  2 ) | 
						
							| 25 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 26 |  | id | ⊢ ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃  →  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 29 | 28 | reximi | ⊢ ( ∃ 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 30 | 29 | reximi | ⊢ ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 31 |  | ssrexv | ⊢ ( ℕ0  ⊆  ℤ  →  ( ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 32 | 25 31 | ax-mp | ⊢ ( ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 33 | 32 | reximi | ⊢ ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℕ0 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 34 | 3 30 33 | 3syl | ⊢ ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 35 |  | ssrexv | ⊢ ( ℕ0  ⊆  ℤ  →  ( ∃ 𝑎  ∈  ℕ0 ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) ) | 
						
							| 36 | 25 34 35 | mpsyl | ⊢ ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) )  →  ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 38 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 40 |  | 2sqb | ⊢ ( 𝑃  ∈  ℙ  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ 𝑃  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  ↔  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 42 | 37 41 | mpbid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) )  →  ( 𝑃  =  2  ∨  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 43 | 42 | ord | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) )  →  ( ¬  𝑃  =  2  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( ¬  𝑃  =  2  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 45 | 24 44 | mpid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 46 | 23 45 | sylbir | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ¬  𝑃  ∈  { 2 } )  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 47 | 46 | expcom | ⊢ ( ¬  𝑃  ∈  { 2 }  →  ( 𝑃  ∈  ℙ  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) ) | 
						
							| 48 | 22 47 | pm2.61i | ⊢ ( 𝑃  ∈  ℙ  →  ( ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 )  →  ( 𝑃  mod  4 )  =  1 ) ) | 
						
							| 49 | 2 48 | impbid | ⊢ ( 𝑃  ∈  ℙ  →  ( ( 𝑃  mod  4 )  =  1  ↔  ∃! 𝑎  ∈  ℕ0 ∃! 𝑏  ∈  ℕ0 ( 𝑎  <  𝑏  ∧  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  𝑃 ) ) ) |