Metamath Proof Explorer


Theorem 2sqreunnlt

Description: There exists a unique decomposition of a prime of the form 4 k + 1 as a sum of squares of two different positive integers. (Contributed by AV, 4-Jun-2023) Specialization to different integers, proposed by GL. (Revised by AV, 25-Jun-2023)

Ref Expression
Hypothesis 2sqreult.1 ( 𝜑 ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) )
Assertion 2sqreunnlt ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 2sqreult.1 ( 𝜑 ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) )
2 2sqreunnltlem ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) )
3 1 bicomi ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ 𝜑 )
4 3 reubii ( ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ 𝜑 )
5 4 reubii ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 )
6 1 2sqreunnlem2 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑
7 2reu1 ( ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) )
8 6 7 mp1i ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) )
9 5 8 syl5bb ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) )
10 2 9 mpbid ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 mod 4 ) = 1 ) → ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) )