Step |
Hyp |
Ref |
Expression |
1 |
|
2sqreult.1 |
⊢ ( 𝜑 ↔ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) |
2 |
|
2sqreunnltblem |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ) ) |
3 |
1
|
bicomi |
⊢ ( ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ 𝜑 ) |
4 |
3
|
reubii |
⊢ ( ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑏 ∈ ℕ 𝜑 ) |
5 |
4
|
reubii |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 ) |
6 |
1
|
2sqreunnlem2 |
⊢ ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 |
7 |
|
2reu1 |
⊢ ( ∀ 𝑎 ∈ ℕ ∃* 𝑏 ∈ ℕ 𝜑 → ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ 𝜑 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) |
9 |
5 8
|
bitri |
⊢ ( ∃! 𝑎 ∈ ℕ ∃! 𝑏 ∈ ℕ ( 𝑎 < 𝑏 ∧ ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = 𝑃 ) ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) |
10 |
2 9
|
bitrdi |
⊢ ( 𝑃 ∈ ℙ → ( ( 𝑃 mod 4 ) = 1 ↔ ( ∃! 𝑎 ∈ ℕ ∃ 𝑏 ∈ ℕ 𝜑 ∧ ∃! 𝑏 ∈ ℕ ∃ 𝑎 ∈ ℕ 𝜑 ) ) ) |